A Direct Comparison of the MM-GB/SA Scoring Procedure and Free-Energy Perturbation Calculations Using Carbonic Anhydrase as a Test Case: Strengths and Pitfalls of Each Approach

被引:18
作者
Guimaraes, Cristiano R. W. [1 ]
机构
[1] Pfizer Inc, Worldwide Med Chem Dept, Groton, CT 06340 USA
关键词
PROTEIN-LIGAND COMPLEXES; BINDING FREE-ENERGIES; PHYSICS-BASED METHODS; P38 MAP KINASE; MOLECULAR-MECHANICS; LEAD OPTIMIZATION; DOCKING ACCURACY; FORCE-FIELD; INHIBITORS; SIMULATIONS;
D O I
10.1021/ct200244p
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
MM-GB/SA scoring and free energy perturbation (FEP) calculations have emerged as reliable methodologies to understand structural and energetic relationships to binding. In spite of successful applications to elucidate the structure-activity relationships for few pairs of ligands, the reality is that the performance of FEP calculations has rarely been tested for more than a handful of compounds. In this work, a series of 13 benzene sulfonamide inhibitors of carbonic anhydrase with binding free energies determined by isothermal titration calorimetry was selected as a test case. R(2) values of 0.70, 0.71, and 0.49 with the experiment were obtained with MM-GB/SA and FEP simulations run with MCPRO+ and Desmond, respectively. All methods work well, but the results obtained with Desmond are inferior to MM-GB/SA and MCPRO+. The main contrast between the methods is the level of sampling, ranging from full to restricted flexibility to single conformation for the complexes in Desmond, MCPRO+, and MM-GB/SA, respectively. The current and historical results obtained with MM-GB/SA qualify this approach as a more attractive alternative for rank-ordering; it can achieve equivalent or superior predictive accuracy and handle more structurally dissimilar ligands at a fraction of the computational cost of the rigorous free-energy methods. As for the large theoretical dynamic range for the binding energies, that seems to be a direct result of the degree of sampling in the simulations since MCPRO+ as well as MM-GB/SA are plagued by this. Van't Hoff analysis for selected pairs of ligands suggests that the wider scoring spread is not only affected by missing entropic contributions due to restricted sampling but also exaggerated enthalpic separation between the weak and potent compounds caused by diminished shielding of electrostatic interactions, thermal effects, and protein relaxation/strain.
引用
收藏
页码:2296 / 2306
页数:11
相关论文
共 49 条
[1]   Role of the active-site solvent in the thermodynamics of factor Xa ligand binding [J].
Abel, Robert ;
Young, Tom ;
Farid, Ramy ;
Berne, Bruce J. ;
Friesner, Richard A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (09) :2817-2831
[3]   How accurate can molecular dynamics/linear response and Poisson-Boltzmann/solvent accessible surface calculations be for predicting relative binding affinities?: Acetylcholinesterase huprine inhibitors as a test case [J].
Barril, X ;
Gelpí, JL ;
López, JM ;
Orozco, M ;
Luque, FJ .
THEORETICAL CHEMISTRY ACCOUNTS, 2001, 106 (1-2) :2-9
[4]   EFFICIENT ESTIMATION OF FREE-ENERGY DIFFERENCES FROM MONTE-CARLO DATA [J].
BENNETT, CH .
JOURNAL OF COMPUTATIONAL PHYSICS, 1976, 22 (02) :245-268
[5]   THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS [J].
BERENDSEN, HJC ;
GRIGERA, JR ;
STRAATSMA, TP .
JOURNAL OF PHYSICAL CHEMISTRY, 1987, 91 (24) :6269-6271
[6]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[7]   Virtual ligand screening against Escherichia coli dihydrofolate reductase:: Improving docking enrichment using physics-based methods [J].
Bernacki, K ;
Kalyanaraman, C ;
Jacobson, MP .
JOURNAL OF BIOMOLECULAR SCREENING, 2005, 10 (07) :675-681
[8]   AVOIDING SINGULARITIES AND NUMERICAL INSTABILITIES IN FREE-ENERGY CALCULATIONS BASED ON MOLECULAR SIMULATIONS [J].
BEUTLER, TC ;
MARK, AE ;
VANSCHAIK, RC ;
GERBER, PR ;
VANGUNSTEREN, WF .
CHEMICAL PHYSICS LETTERS, 1994, 222 (06) :529-539
[9]   Predicting Ligand Binding Affinity with Alchemical Free Energy Methods in a Polar Model Binding Site [J].
Boyce, Sarah E. ;
Mobley, David L. ;
Rocklin, Gabriel J. ;
Graves, Alan P. ;
Dill, Ken A. ;
Shoichet, Brian K. .
JOURNAL OF MOLECULAR BIOLOGY, 2009, 394 (04) :747-763
[10]   Ligand configurational entropy and protein binding [J].
Chang, Chia-en A. ;
Chen, Wei ;
Gilson, Michael K. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (05) :1534-1539