Pharmacologic manipulation of ob expression in a dietary model of obesity

被引:88
作者
Collins, S [1 ]
Surwit, RS [1 ]
机构
[1] DUKE UNIV, MED CTR, SARAH W STEDMAN CTR NUTRIT STUDIES, DURHAM, NC 27710 USA
关键词
D O I
10.1074/jbc.271.16.9437
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mutation of the obese (ob) gene results in severe hereditary obesity and diabetes in the C57BL/6J and related strains of mice. In this study we examined the expression of the ob gene in a dietary model in which moderate obesity develops in response to fat (58% of calories from fat) without mutation of the ob gene, and in four genetic models of obesity in mice: ob/ob, db/db, tubby, and fat, Several white and brown adipose depots were examined (epididymal, subcutaneous, perirenal, and interscapular), Northern blot analysis shows that levels of ob mRNA are increased in all adipose depots examined in every model of obesity, The average fold increases were 12.0 +/- 2.1 (ob/ob), 4.8 +/- 1.5 (db/db), 2.8 +/- 0.1 (tubby), 2.4 +/- 0.3 (fat), and 2.1 +/- 0.2 (high fat diet-induced A/J), Moreover, we found that the expression of the ob gene could be manipulated by pharmacologically blocking the development of diet-induced obesity. Supplementation of a high fat diet with a beta(3)-adrenergic receptor agonist (CL316,243) prevented obesity, but not hyperphagia associated with high fat feeding (body weights of high fat-fed A/J mice = 34.0 +/- 1.0 g; high fat plus CL316,243-fed mice = 26.8 +/- 0.5 g; n = 10), CL316,243-treated, high fat-fed animals contained levels of ob mRNA in all adipose depots that were equal to or less than levels in low fat-fed mice (average levels in high fat plus CL316,243-fed mice relative to low fat-fed mice: 0.93 +/- 0.09), Inasmuch as fat cell size, but not number, was increased in a previous study in diet-induced obese A/J mice, these results indicate that expression of the ob gene serves as a sensor of fat cell hypertrophy, independent of any effects on food intake.
引用
收藏
页码:9437 / 9440
页数:4
相关论文
共 28 条
[1]   ATYPICAL BETA-ADRENOCEPTOR ON BROWN ADIPOCYTES AS TARGET FOR ANTI-OBESITY DRUGS [J].
ARCH, JRS ;
AINSWORTH, AT ;
CAWTHORNE, MA ;
PIERCY, V ;
SENNITT, MV ;
THODY, VE ;
WILSON, C ;
WILSON, S .
NATURE, 1984, 309 (5964) :163-165
[2]   OBESITY AS AN ADAPTATION TO A HIGH-FAT DIET - EVIDENCE FROM A CROSS-SECTIONAL STUDY [J].
ASTRUP, A ;
BUEMANN, B ;
WESTERN, P ;
TOUBRO, S ;
RABEN, A ;
CHRISTENSEN, NJ .
AMERICAN JOURNAL OF CLINICAL NUTRITION, 1994, 59 (02) :350-355
[3]   DISODIUM (R,R)-5-[2-[[2-(3-CHLOROPHENYL)-2-HYDROXYETHYL]AMINO]PROPYL]-1,3-BENZODIOXOLE-2,2-DICARBOXYLATE (CL 316,243) - A POTENT BETA-ADRENERGIC AGONIST VIRTUALLY SPECIFIC FOR BETA-3 RECEPTORS - A PROMISING ANTIDIABETIC AND ANTIOBESITY AGENT [J].
BLOOM, JD ;
DUTIA, MD ;
JOHNSON, BD ;
WISSNER, A ;
BURNS, MG ;
LARGIS, EE ;
DOLAN, JA ;
CLAUS, TH .
JOURNAL OF MEDICINAL CHEMISTRY, 1992, 35 (16) :3081-3084
[4]   RECOMBINANT MOUSE OB PROTEIN - EVIDENCE FOR A PERIPHERAL SIGNAL LINKING ADIPOSITY AND CENTRAL NEURAL NETWORKS [J].
CAMPFIELD, LA ;
SMITH, FJ ;
GUISEZ, Y ;
DEVOS, R ;
BURN, P .
SCIENCE, 1995, 269 (5223) :546-549
[5]   ISOLATION OF BIOLOGICALLY-ACTIVE RIBONUCLEIC-ACID FROM SOURCES ENRICHED IN RIBONUCLEASE [J].
CHIRGWIN, JM ;
PRZYBYLA, AE ;
MACDONALD, RJ ;
RUTTER, WJ .
BIOCHEMISTRY, 1979, 18 (24) :5294-5299
[6]  
COLEMAN DL, 1969, AM J PHYSIOL, V217, P1298
[7]   EFFECTS OF PARABIOSIS OF OBESE WITH DIABETES AND NORMAL MICE [J].
COLEMAN, DL .
DIABETOLOGIA, 1973, 9 (04) :294-298
[8]   FAT (FAT) AND TUBBY (TUB) - 2 AUTOSOMAL RECESSIVE MUTATIONS CAUSING OBESITY SYNDROMES IN THE MOUSE [J].
COLEMAN, DL ;
EICHER, EM .
JOURNAL OF HEREDITY, 1990, 81 (06) :424-427
[9]  
COLEMAN DL, 1982, DIABETES, V31, P1
[10]  
COLLINS S, 1988, J BIOL CHEM, V263, P9067