PSD-95 assembles a ternary complex with the N-methyl-D-aspartic acid receptor and a bivalent neuronal NO synthase PDZ domain

被引:464
作者
Christopherson, KS
Hillier, BJ
Lim, WA
Bredt, DS
机构
[1] Univ Calif San Francisco, Sch Med, Dept Physiol, San Francisco, CA 94143 USA
[2] Univ Calif San Francisco, Dept Mol & Cellular Pharmacol, San Francisco, CA 94143 USA
[3] Univ Calif San Francisco, Program Biomed Sci, San Francisco, CA 94143 USA
关键词
D O I
10.1074/jbc.274.39.27467
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Nitric oxide (NO) biosynthesis in cerebellum is preferentially activated by calcium influx through N-methyl-D-aspartate (NMDA)-type glutamate receptors, suggesting that there is a specific link between these receptors and neuronal NO synthase (nNOS). Here, we find that PSD-95 assembles a postsynaptic protein complex containing nNOS and NMDA receptors. Formation of this complex is mediated by the PDZ domains of PSD-95, which bind to the COOH termini of specific NMDA receptor subunits. In contrast, nNOS is recruited to this complex by a novel PDZ-PDZ interaction in which PSD-95 recognizes an internal motif adjacent to the consensus nNOS PDZ domain. This internal motif is a structured "pseudo-peptide" extension of the nNOS PDZ that interacts with the peptide-binding pocket of PSD-95 PDZ2. This asymmetric interaction leaves the peptide-binding pocket of the nNOS PDZ domain available to interact with additional COOH-terminal PDZ ligands. Accordingly, we find that the nNOS PDZ domain can bind PSD-95 PDZ2 and a COOH-terminal peptide simultaneously. This bivalent nature of the nNOS PDZ domain further expands the scope for assembly of protein networks by PDZ domains.
引用
收藏
页码:27467 / 27473
页数:7
相关论文
共 49 条
[1]   NMDA-R1 subunit of the cerebral cortex co-localizes with neuronal nitric oxide synthase at pre- and postsynaptic sites and in spines [J].
Aoki, C ;
Rhee, J ;
Lubin, M ;
Dawson, TM .
BRAIN RESEARCH, 1997, 750 (1-2) :25-40
[2]   NITRIC-OXIDE SYNTHASE IN THE VISUAL-CORTEX OF MONOCULAR MONKEYS AS REVEALED BY LIGHT AND ELECTRON-MICROSCOPIC IMMUNOCYTOCHEMISTRY [J].
AOKI, C ;
FENSTEMAKER, S ;
LUBIN, M ;
GO, CG .
BRAIN RESEARCH, 1993, 620 (01) :97-113
[3]  
BAEK KJ, 1993, J BIOL CHEM, V268, P21120
[4]   Discs lost, a novel multi-PDZ domain protein, establishes and maintains epithelial polarity [J].
Bhat, MA ;
Izaddoost, S ;
Lu, Y ;
Cho, KO ;
Choi, KW ;
Bellen, HJ .
CELL, 1999, 96 (06) :833-845
[5]   ISOLATION OF NITRIC-OXIDE SYNTHETASE, A CALMODULIN-REQUIRING ENZYME [J].
BREDT, DS ;
SNYDER, SH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (02) :682-685
[6]   CLONED AND EXPRESSED NITRIC-OXIDE SYNTHASE STRUCTURALLY RESEMBLES CYTOCHROME-P-450 REDUCTASE [J].
BREDT, DS ;
HWANG, PM ;
GLATT, CE ;
LOWENSTEIN, C ;
REED, RR ;
SNYDER, SH .
NATURE, 1991, 351 (6329) :714-718
[7]   Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha 1-syntrophin mediated by PDZ domains [J].
Brenman, JE ;
Chao, DS ;
Gee, SH ;
McGee, AW ;
Craven, SE ;
Santillano, DR ;
Wu, ZQ ;
Huang, F ;
Xia, HH ;
Peters, MF ;
Froehner, SC ;
Bredt, DS .
CELL, 1996, 84 (05) :757-767
[8]   NITRIC-OXIDE SYNTHASE COMPLEXED WITH DYSTROPHIN AND ABSENT FROM SKELETAL-MUSCLE SARCOLEMMA IN DUCHENNE MUSCULAR-DYSTROPHY [J].
BRENMAN, JE ;
CHAO, DS ;
XIA, HH ;
ALDAPE, K ;
BREDT, DS .
CELL, 1995, 82 (05) :743-752
[9]   Selective loss of sarcolemmal nitric oxide synthase in Becker muscular dystrophy [J].
Chao, DS ;
Gorospe, JRM ;
Brenman, JE ;
Rafael, JA ;
Peters, MF ;
Froehner, SC ;
Hoffman, EP ;
Chamberlain, JS ;
Bredt, DS .
JOURNAL OF EXPERIMENTAL MEDICINE, 1996, 184 (02) :609-618
[10]   Requirement for the PDZ domain protein, INAD, for localization of the TRP store-operated channel to a signaling complex [J].
Chevesich, J ;
Kreuz, AJ ;
Montell, C .
NEURON, 1997, 18 (01) :95-105