Age-dependent decline of DNA repair activity for oxidative lesions in rat brain mitochondria

被引:112
作者
Chen, DX
Cao, GD
Hastings, T
Feng, YQ
Pei, W
O'Horo, C
Chen, J
机构
[1] Univ Pittsburgh, Sch Med, Dept Neurol, Pittsburgh, PA 15213 USA
[2] Univ Pittsburgh, Sch Med, Pittsburgh Inst Neurodegenerat Disorders, Pittsburgh, PA 15213 USA
[3] Vet Affairs Pittsburgh Hlth Care Syst, Ctr Geriatr Res Educ & Clin, Pittsburgh, PA USA
关键词
8-hydroxyl-2 '-deoxyguanosine; aging; DNA damage; mitochondrial dysfunction; oxidative stress;
D O I
10.1046/j.1471-4159.2002.00916.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Endogenous oxidative damage to brain mitochondrial DNA and mitochondrial dysfunction are contributing factors in aging and in the pathogenesis of a number of neurodegenerative diseases. In this study, we characterized the regulation of base-excision-repair (BER) activity, the predominant repair mechanism for oxidative DNA lesions, in brain mitochondria as the function of age. Mitochondrial protein extracts were prepared from rat cerebral cortices at the ages of embryonic day 17 (E17) or postnatal 1-, 2-, and 3-weeks, or 5- and 30-months. The total BER activity and the activity of essential BER enzymes were examined in mitochondria using in vitro DNA repair assay employing specific repair substrates. Mitochondrial BER activity showed marked age-dependent declines in the brain. The levels of overall BER activity were highest at E17, gradually decreased thereafter, and reached to the lowest at the age of 30-month (similar to80% reduction). The decline of overall BER activity with age was attributed to the decreased expression of repair enzymes such as 8-OHdG glycosylase and DNA polymerase-gamma and, consequently, the reduced activity at the steps of lesion-base incision, DNA repair synthesis and DNA ligation in the BER pathway. These results strongly suggest that the decline in BER activity may be an important mechanism contributing to the age-dependent accumulation of oxidative DNA lesions in brain mitochondria.
引用
收藏
页码:1273 / 1284
页数:12
相关论文
共 54 条
[11]  
Chen J, 1998, J NEUROSCI, V18, P4914
[12]   ABSENCE OF A PYRIMIDINE DIMER REPAIR MECHANISM IN MAMMALIAN MITOCHONDRIA [J].
CLAYTON, DA ;
DODA, JN ;
FRIEDBER.EC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1974, 71 (07) :2777-2781
[13]   MITOCHONDRIAL-DNA DELETIONS IN HUMAN BRAIN - REGIONAL VARIABILITY AND INCREASE WITH ADVANCED AGE [J].
CORRALDEBRINSKI, M ;
HORTON, T ;
LOTT, MT ;
SHOFFNER, JM ;
BEAL, MF ;
WALLACE, DC .
NATURE GENETICS, 1992, 2 (04) :324-329
[14]   A PATTERN OF ACCUMULATION OF A SOMATIC DELETION OF MITOCHONDRIAL-DNA IN AGING HUMAN TISSUES [J].
CORTOPASSI, GA ;
SHIBATA, D ;
SOONG, NW ;
ARNHEIM, N .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (16) :7370-7374
[15]   An oxidative damage-specific endonuclease from rat liver mitochondria [J].
Croteau, DL ;
apRhys, CMJ ;
Hudson, EK ;
Dianov, GL ;
Hansford, RG ;
Bohr, VA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (43) :27338-27344
[16]   Repair of oxidative damage to nuclear and mitochondrial DNA in mammalian cells [J].
Croteau, DL ;
Bohr, VA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (41) :25409-25412
[17]  
de Souza-Pinto NC, 2001, CANCER RES, V61, P5378
[18]   RECONSTITUTION OF THE DNA-BASE EXCISION-REPAIR PATHWAY [J].
DIANOV, G ;
LINDAHL, T .
CURRENT BIOLOGY, 1994, 4 (12) :1069-1076
[19]  
DRIGGERS WJ, 1993, J BIOL CHEM, V268, P22042
[20]   Mapping frequencies of endogenous oxidative damage and the kinetic response to oxidative stress in a region of rat mtDNA [J].
Driggers, WJ ;
Holmquist, GP ;
LeDoux, SP ;
Wilson, GL .
NUCLEIC ACIDS RESEARCH, 1997, 25 (21) :4362-4369