Crosstalk between nitric oxide and zinc pathways to neuronal cell death involving mitochondrial dysfunction and p38-activated K+ channels

被引:319
作者
Bossy-Wetzel, E [1 ]
Talantova, MV
Lee, WD
Schölzke, MN
Harrop, A
Mathews, E
Götz, T
Han, JH
Ellisman, MH
Perkins, GA
Lipton, SA
机构
[1] Burnham Inst, Ctr Neurosci & Aging, La Jolla, CA 92037 USA
[2] Univ Calif San Diego, Sch Med, Dept Neurosci, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Natl Ctr Microscopy & Imaging Res, La Jolla, CA 92093 USA
[4] Scripps Res Inst, Dept Immunol, La Jolla, CA 92037 USA
关键词
D O I
10.1016/S0896-6273(04)00015-7
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Nitric oxide (NO) and zinc (Zn2+) are implicated in the pathogenesis of cerebral ischemia and neurodegenerative diseases. However, their relationship and the molecular mechanism of their neurotoxic effects remain unclear. Here we show that addition of exogenous NO or NMDA (to increase endogenous NO) leads to peroxynitrite (ONOO-) formation and consequent Zn2+ release from intracellular stores in cerebrocortical neurons. Free Zn2+ in turn induces respiratory block, mitochondrial permeability transition (mPT), cytochrome c release, generation of reactive oxygen species (ROS), and p38 MAP kinase activation. This pathway leads to caspase-independent K+ efflux with cell volume loss and apoptotic-like death. Moreover, Zn2+ chelators, ROS scavengers, Bcl-x(L), dominant-interfering p38, or K+ channel blockers all attenuate NO-induced K+ efflux, cell volume loss, and neuronal apoptosis. Thus, these data establish a new form of crosstalk between NO and Zn2+ apoptotic signal transduction pathways that may contribute to neurodegeneration.
引用
收藏
页码:351 / 365
页数:15
相关论文
共 65 条
[11]   A primary role for K+ and Na+ efflux in the activation of apoptosis [J].
Bortner, CD ;
Hughes, FM ;
Cidlowski, JA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (51) :32436-32442
[12]  
Bossy-Wetzel E, 2000, METHOD ENZYMOL, V322, P235
[13]   LOCALIZATION OF NITRIC-OXIDE SYNTHASE INDICATING A NEURAL ROLE FOR NITRIC-OXIDE [J].
BREDT, DS ;
HWANG, PM ;
SNYDER, SH .
NATURE, 1990, 347 (6295) :768-770
[14]   Nitric oxide acutely inhibits neuronal energy production [J].
Brorson, JR ;
Schumacker, PT ;
Zhang, H .
JOURNAL OF NEUROSCIENCE, 1999, 19 (01) :147-158
[15]   Zn2+ inhibits α-ketoglutarate-stimulated mitochondrial respiration and the isolated α-ketoglutarate dehydrogenase complex [J].
Brown, AM ;
Kristal, BS ;
Effron, MS ;
Shestopalov, AI ;
Ullucci, PA ;
Sheu, KFR ;
Blass, JP ;
Cooper, AJL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (18) :13441-13447
[16]   Mitochondrial and extramitochondrial apoptotic signaling pathways in cerebrocortical neurons [J].
Budd, SL ;
Tenneti, L ;
Lishnak, T ;
Lipton, SA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (11) :6161-6166
[17]   RAPID INDUCTION OF ALZHEIMER A-BETA AMYLOID FORMATION BY ZINC [J].
BUSH, AI ;
PETTINGELL, WH ;
MULTHAUP, G ;
PARADIS, MD ;
VONSATTEL, JP ;
GUSELLA, JF ;
BEYREUTHER, K ;
MASTERS, CL ;
TANZI, RE .
SCIENCE, 1994, 265 (5177) :1464-1467
[18]   ZINC NEUROTOXICITY IN CORTICAL CELL-CULTURE [J].
CHOI, DW ;
YOKOYAMA, M ;
KOH, J .
NEUROSCIENCE, 1988, 24 (01) :67-79
[19]   Molecular basis of NMDA receptor-coupled ion channel modulation by S-nitrosylation [J].
Choi, YB ;
Tenneti, L ;
Le, DA ;
Ortiz, J ;
Bai, G ;
Chen, HSV ;
Lipton, SA .
NATURE NEUROSCIENCE, 2000, 3 (01) :15-21
[20]   Nitric oxide generators produce accumulation of chelatable zinc in hippocampal neuronal perikarya [J].
Cuajungco, MP ;
Lees, GJ .
BRAIN RESEARCH, 1998, 799 (01) :118-129