Induction of myogenesis in Mesenchymal cells by MyoD depends on their degree of differentiation

被引:13
作者
Filvaroff, EH
Derynck, R
机构
[1] UNIV CALIF SAN FRANCISCO,DEPT ANAT,CELL BIOL PROGRAM,SAN FRANCISCO,CA 94143
[2] UNIV CALIF SAN FRANCISCO,DEPT ANAT,DEV BIOL PROGRAM,SAN FRANCISCO,CA 94143
关键词
D O I
10.1006/dbio.1996.0231
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Expression of a transfected MyoD gene induces myogenic differentiation of most cell types. In this study, we evaluated the ability of an exogenous MyoD gene to induce myogenic conversion in two pairs of matched cell lines with different degrees of differentiation within either the osteoblastic or chondrocytic lineage. We show that osteoblasts and chondrocytes are resistant to the myogenic effects of MyoD alone. However, in their less-differentiated cell line counterparts, MyoD induces expression of muscle-cell-specific markers. Less-differentiated osteoblasts can be made resistant to MyoD-induced myogenic conversion by induction of adipogenic differentiation using dexamethasone. Finally, a dominant positive form of MyoD, one which is tethered to a partner, E47, activates muscle-specific gene expression in osteoblasts. Our results suggest that the response of a cell to MyoD depends on its lineage and its degree of differentiation. Furthermore, commitment of cells to the osteoblastic or chondrocytic lineage may involve inhibition of alternative pathways, such as those leading to myoblastic differentiation. Finally, osteoblasts may express a protein(s) which interferes with the activity of MyoD by inhibiting its association with E proteins. This interference can be overcome by expression of the MyoD-E47 hybrid, suggesting that osteoblasts are otherwise competent to undergo myogenic conversion. (C) 1996 Academic Press, Inc.
引用
收藏
页码:459 / 471
页数:13
相关论文
共 71 条
[1]   THE PROTEIN ID - A NEGATIVE REGULATOR OF HELIX-LOOP-HELIX DNA-BINDING PROTEINS [J].
BENEZRA, R ;
DAVIS, RL ;
LOCKSHON, D ;
TURNER, DL ;
WEINTRAUB, H .
CELL, 1990, 61 (01) :49-59
[2]   POSITIVE CONTROL MUTATIONS IN THE MYOD BASIC REGION FAIL TO SHOW COOPERATIVE DNA-BINDING AND TRANSCRIPTIONAL ACTIVATION IN-VITRO [J].
BENGAL, E ;
FLORES, O ;
RANGARAJAN, PN ;
CHEN, A ;
WEINTRAUB, H ;
VERMA, IM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (13) :6221-6225
[3]   FUNCTIONAL ANTAGONISM BETWEEN C-JUN AND MYOD PROTEINS - A DIRECT PHYSICAL ASSOCIATION [J].
BENGAL, E ;
RANSONE, L ;
SCHARFMANN, R ;
DWARKI, VJ ;
TAPSCOTT, SJ ;
WEINTRAUB, H ;
VERMA, IM .
CELL, 1992, 68 (03) :507-519
[4]   DIFFERENCES AND SIMILARITIES IN DNA-BINDING PREFERENCES OF MYOD AND E2A PROTEIN COMPLEXES REVEALED BY BINDING-SITE SELECTION [J].
BLACKWELL, TK ;
WEINTRAUB, H .
SCIENCE, 1990, 250 (4984) :1104-1110
[5]   CYTOPLASMIC ACTIVATION OF HUMAN NUCLEAR GENES IN STABLE HETEROCARYONS [J].
BLAU, HM ;
CHIU, CP ;
WEBSTER, C .
CELL, 1983, 32 (04) :1171-1180
[6]   PROGRESSIVE STAGES OF TRANSDIFFERENTIATION FROM EPIDERMAL TO MESENCHYMAL PHENOTYPE INDUCED BY MYOD1 TRANSFECTION, 5-AZA-2'-DEOXYCYTIDINE TREATMENT, AND SELECTION FOR REDUCED CELL ATTACHMENT IN THE HUMAN KERATINOCYTE LINE HACAT [J].
BOUKAMP, P ;
CHEN, J ;
GONZALES, F ;
JONES, PA ;
FUSENIG, NE .
JOURNAL OF CELL BIOLOGY, 1992, 116 (05) :1257-1271
[7]   DIFFERENTIAL EXPRESSION OF MYOGENIC DETERMINATION GENES IN MUSCLE-CELLS - POSSIBLE AUTOACTIVATION BY THE MYF GENE-PRODUCTS [J].
BRAUN, T ;
BOBER, E ;
BUSCHHAUSENDENKER, G ;
KOTZ, S ;
GRZESCHIK, KH ;
ARNOLD, HH .
EMBO JOURNAL, 1989, 8 (12) :3617-3625
[8]  
CHEN J, 1990, CELL GROWTH DIFFER, V1, P383
[9]   MYOD CONVERTS PRIMARY DERMAL FIBROBLASTS, CHONDROBLASTS, SMOOTH-MUSCLE, AND RETINAL PIGMENTED EPITHELIAL-CELLS INTO STRIATED MONONUCLEATED MYOBLASTS AND MULTINUCLEATED MYOTUBES [J].
CHOI, J ;
COSTA, ML ;
MERMELSTEIN, CS ;
CHAGAS, C ;
HOLTZER, S ;
HOLTZER, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (20) :7988-7992
[10]   SINGLE-STEP METHOD OF RNA ISOLATION BY ACID GUANIDINIUM THIOCYANATE PHENOL CHLOROFORM EXTRACTION [J].
CHOMCZYNSKI, P ;
SACCHI, N .
ANALYTICAL BIOCHEMISTRY, 1987, 162 (01) :156-159