How well do experience curves predict technological progress? A method for making distributional forecasts

被引:44
作者
Lafond, Francois [1 ,2 ,3 ]
Bailey, Aimee Gotway [4 ]
Bakker, Jan David [5 ]
Rebois, Dylan [2 ]
Zadourian, Rubina [1 ,6 ,7 ]
McSharry, Patrick [2 ,8 ,9 ,10 ]
Farmer, J. Doyne [1 ,6 ,11 ,12 ]
机构
[1] Oxford Martin Sch, Inst New Econ Thinking, Oxford, England
[2] Univ Oxford, Smith Sch Enterprise & Environm, Oxford, England
[3] London Inst Math Sci, London, England
[4] US DOE, Washington, DC 20585 USA
[5] Univ Oxford, Dept Econ, Oxford, England
[6] Univ Oxford, Math Inst, Oxford, England
[7] Max Planck Inst Phys Komplexer Syst, Dresden, Germany
[8] Carnegie Mellon Univ Africa, Kigali, Rwanda
[9] Univ Rwanda, African Ctr Excellence Data Sci, Butare, Rwanda
[10] Univ Oxford, Oxford Man Inst Quantitat Finance, Oxford, England
[11] Univ Oxford, Comp Sci Dept, Oxford, England
[12] Santa Fe Inst, Santa Fe, NM 87501 USA
基金
欧盟地平线“2020”;
关键词
Forecasting; Technological progress; Experience curves; RENEWABLE ENERGY TECHNOLOGIES; LEARNING-CURVE; PHOTOVOLTAICS; DYNAMICS; INDUSTRY; MODELS; COST; PERSPECTIVE; PROSPECTS; ADOPTION;
D O I
10.1016/j.techfore.2017.11.001
中图分类号
F [经济];
学科分类号
02 ;
摘要
Experience curves are widely used to predict the cost benefits of increasing the deployment of a technology. But how good are such forecasts? Can one predict their accuracy a priori? In this paper we answer these questions by developing a method to make distributional forecasts for experience curves. We test our method using a dataset with proxies for cost and experience for 51 products and technologies and show that it works reasonably well. The framework that we develop helps clarify why the experience curve method often gives similar results to simply assuming that costs decrease exponentially. To illustrate our method we make a distributional forecast for prices of solar photovoltaic modules.
引用
收藏
页码:104 / 117
页数:14
相关论文
共 72 条
[11]  
Bailey A. G., 2012, ARCS WORKSH ARCS, P1
[12]   Quantitative Determination of Technological Improvement from Patent Data [J].
Benson, Christopher L. ;
Magee, Christopher L. .
PLOS ONE, 2015, 10 (04)
[13]   Determinants of the Pace of Global Innovation in Energy Technologies [J].
Bettencourt, Luis M. A. ;
Trancik, Jessika E. ;
Kaur, Jasleen .
PLOS ONE, 2013, 8 (10)
[14]   The future prospect of PV and CSP solar technologies: An expert elicitation survey [J].
Bosetti, Valentina ;
Catenacci, Michela ;
Fiorese, Giulia ;
Verdolini, Elena .
ENERGY POLICY, 2012, 49 :308-317
[15]   The dynamics of solar PV costs and prices as a challenge for technology forecasting [J].
Candelise, Chiara ;
Winskel, Mark ;
Gross, Robert J. K. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2013, 26 :96-107
[16]  
Clark T, 2013, HBK ECON, P1107, DOI 10.1016/B978-0-444-62731-5.00020-8
[17]  
Clements Michael P., 2001, The Econometrics Journal, V4, P1
[18]   The economics of the combined cycle gas turbine - an experience curve analysis [J].
Colpier, UC ;
Cornland, D .
ENERGY POLICY, 2002, 30 (04) :309-316
[19]   Predicting the costs of photovoltaic solar modules in 2020 using experience curve models [J].
de la Tour, Arnaud ;
Glachant, Matthieu ;
Meniere, Yann .
ENERGY, 2013, 62 :341-348
[20]   Evaluating density forecasts with applications to financial risk management [J].
Diebold, FX ;
Gunther, TA ;
Tay, AS .
INTERNATIONAL ECONOMIC REVIEW, 1998, 39 (04) :863-883