Ranking spreaders by decomposing complex networks

被引:415
作者
Zeng, An [1 ,2 ]
Zhang, Cheng-Jun [1 ]
机构
[1] Univ Fribourg, Dept Phys, CH-1700 Fribourg, Switzerland
[2] Hangzhou Normal Univ, Inst Informat Econ, Hangzhou 310036, Zhejiang, Peoples R China
基金
瑞士国家科学基金会;
关键词
Complex networks; Network decomposition; Spreading; COMMUNITY STRUCTURE; CENTRALITY; ORGANIZATION; MODEL;
D O I
10.1016/j.physleta.2013.02.039
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Ranking the nodes' ability of spreading in networks is crucial for designing efficient strategies to hinder spreading in the case of diseases or accelerate spreading in the case of information dissemination. In the well-known k-shell method, nodes are ranked only according to the links between the remaining nodes (residual links) while the links connecting to the removed nodes (exhausted links) are entirely ignored. In this Letter, we propose a mixed degree decomposition (MDD) procedure in which both the residual degree and the exhausted degree are considered. By simulating the epidemic spreading process on real networks, we show that the MDD method can outperform the k-shell and degree methods in ranking spreaders. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:1031 / 1035
页数:5
相关论文
共 47 条
[11]   Identifying influential nodes in complex networks [J].
Chen, Duanbing ;
Lu, Linyuan ;
Shang, Ming-Sheng ;
Zhang, Yi-Cheng ;
Zhou, Tao .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2012, 391 (04) :1777-1787
[12]   Finding a better immunization strategy [J].
Chen, Yiping ;
Paul, Gerald ;
Havlin, Shlomo ;
Liljeros, Fredrik ;
Stanley, H. Eugene .
PHYSICAL REVIEW LETTERS, 2008, 101 (05)
[13]   Efficient immunization strategies for computer networks and populations [J].
Cohen, R ;
Havlin, S ;
ben-Avraham, D .
PHYSICAL REVIEW LETTERS, 2003, 91 (24)
[14]   Reaction-diffusion processes and metapopulation models in heterogeneous networks [J].
Colizza, Vittoria ;
Pastor-Satorras, Romualdo ;
Vespignani, Alessandro .
NATURE PHYSICS, 2007, 3 (04) :276-282
[15]   Identifying the starting point of a spreading process in complex networks [J].
Comin, Cesar Henrique ;
Costa, Luciano da Fontoura .
PHYSICAL REVIEW E, 2011, 84 (05)
[16]  
Da Silva R.A.P., 2012, ARXIV12020024V1
[17]   Critical phenomena in complex networks [J].
Dorogovtsev, S. N. ;
Goltsev, A. V. ;
Mendes, J. F. F. .
REVIEWS OF MODERN PHYSICS, 2008, 80 (04) :1275-1335
[18]   k-core organization of complex networks -: art. no. 040601 [J].
Dorogovtsev, SN ;
Goltsev, AV ;
Mendes, JFF .
PHYSICAL REVIEW LETTERS, 2006, 96 (04)
[19]   Community detection in complex networks using extremal optimization [J].
Duch, J ;
Arenas, A .
PHYSICAL REVIEW E, 2005, 72 (02)
[20]   Epidemic threshold in structured scale-free networks -: art. no. 108701 [J].
Eguíluz, VM ;
Klemm, K .
PHYSICAL REVIEW LETTERS, 2002, 89 (10)