Shrinkage and model selection with correlated variables via weighted fusion

被引:49
作者
Daye, Z. John [1 ]
Jeng, X. Jessie [1 ]
机构
[1] Purdue Univ, Dept Stat, W Lafayette, IN 47907 USA
关键词
RIDGE REGRESSION; MICROARRAY DATA; COVARIANCE; LASSO;
D O I
10.1016/j.csda.2008.11.007
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we propose the weighted fusion, a new penalized regression and variable selection method for data with correlated variables. The weighted fusion can potentially incorporate information redundancy among correlated variables for estimation and variable selection. Weighted fusion is also useful when the number of predictors p is larger than the number of observations n. It allows the selection of more than n variables in a motivated way. Real data and simulation examples show that weighted fusion can improve variable selection and prediction accuracy. Published by Elsevier B.V.
引用
收藏
页码:1284 / 1298
页数:15
相关论文
共 40 条
[21]  
LI C, 2008, NETWORK CONSTRAINED
[22]   Averaged gene expressions for regression [J].
Park, Mee Young ;
Hastie, Trevor ;
Tibshirani, Robert .
BIOSTATISTICS, 2007, 8 (02) :212-227
[23]   Piecewise linear regularized solution paths [J].
Rosset, Saharon ;
Zhu, Ji .
ANNALS OF STATISTICS, 2007, 35 (03) :1012-1030
[24]  
ROTHMAN AJ, 2008, 477 U MICH DEP STAT
[25]  
ROTHMAN AJ, 2007, 467 U MICH DEP STAT
[26]   Regression approaches for microarray data analysis [J].
Segal, MR ;
Dahlquist, KD ;
Conklin, BR .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2003, 10 (06) :961-980
[27]   Sparsity and smoothness via the fused lasso [J].
Tibshirani, R ;
Saunders, M ;
Rosset, S ;
Zhu, J ;
Knight, K .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2005, 67 :91-108
[29]  
TUTZ G, 2006, 486 U MUNCH
[30]  
Wang L, 2006, STAT SINICA, V16, P589