Presteady-state analysis of avian sarcoma virus integrase - I. A splicing activity and structure-function implications for cognate site recognition

被引:6
作者
Bao, KK
Skalka, AM
Wong, I
机构
[1] Oregon State Univ, Dept Biochem & Biophys, Corvallis, OR 97331 USA
[2] Fox Chase Canc Ctr, Inst Canc Res, Philadelphia, PA 19111 USA
关键词
D O I
10.1074/jbc.M111315200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Integrase catalyzes insertion of a retroviral genome into the host chromosome. After reverse transcription, integrase binds specifically to the ends of the duplex retroviral DNA, endonucleolytically cleaves two nucleotides from each 3'-end (the processing activity), and inserts these ends into the host DNA (the joining activity) in a concerted manner. In first-turnover experiments with synapsed DNA substrates, we observed a novel splicing activity that resembles an integrase joining reaction but uses unprocessed ends. This splicing reaction showed an initial exponential phase (k(splicing) 0.02 s(-1)) of product formation and generated products macroscopically indistinguishable from those created by the processing and joining activities, thus bringing into question methods previously used to quantitate these reactions in a time regime where multiple turnovers of the enzyme have occurred. With a presteady-state assay, however, we were able to distinguish between different pathways that led to formation of identical products. Furthermore, the splicing reaction allowed characterization of substrate binding and specificity. Although integrase requires only a 3' hydroxyl with respect to nucleophiles derived from DNA, it specifically favors the cognate sequence CATT as the electrophile. These experimental results support a two-site "switching" model for binding and catalysis of all three integrase activities.
引用
收藏
页码:12089 / 12098
页数:10
相关论文
共 45 条
[1]   Concerted integration of linear retroviral DNA by the avian sarcoma virus integrase in vitro: Dependence on both long terminal repeat termini [J].
Aiyar, A ;
Hindmarsh, P ;
Skalka, AM ;
Leis, J .
JOURNAL OF VIROLOGY, 1996, 70 (06) :3571-3580
[2]   Retroviral integrase, putting the pieces together [J].
Andrake, MD ;
Skalka, AM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (33) :19633-19636
[3]  
Ausubel F.M., 1988, CURRENT PROTOCOLS MO
[4]   Presteady-state analysis of avian sarcoma virus integrase - II. Reverse-polarity substrates identify preferential processing of the U3-U5 pair [J].
Bao, KK ;
Skalka, AM ;
Wong, I .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (14) :12099-12108
[5]   Target-sequence preferences of HIV-1 integration complexes in vitro [J].
Bor, YC ;
Miller, MD ;
Bushman, FD ;
Orgel, LE .
VIROLOGY, 1996, 222 (01) :283-288
[6]   RETROVIRAL INTEGRATION - STRUCTURE OF THE INITIAL COVALENT PRODUCT AND ITS PRECURSOR, AND A ROLE FOR THE VIRAL IN PROTEIN [J].
BROWN, PO ;
BOWERMAN, B ;
VARMUS, HE ;
BISHOP, JM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (08) :2525-2529
[7]   OLIGONUCLEOTIDE INTERACTIONS .3. CIRCULAR DICHROISM STUDIES OF CONFORMATION OF DEOXYOLIGONUCLEOTIDES [J].
CANTOR, CR ;
WARSHAW, MM ;
SHAPIRO, H .
BIOPOLYMERS, 1970, 9 (09) :1059-&
[8]   In vitro assays for activities of retroviral integrase [J].
Chow, SA .
METHODS-A COMPANION TO METHODS IN ENZYMOLOGY, 1997, 12 (04) :306-317
[9]   HIV integrase, a brief overview from chemistry to therapeutics [J].
Craigie, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (26) :23213-23216
[10]   Oligomeric states of the HIV-1 integrase as measured by time-resolved fluorescence anisotropy [J].
Deprez, E ;
Tauc, P ;
Leh, H ;
Mouscadet, JF ;
Auclair, C ;
Brochon, JC .
BIOCHEMISTRY, 2000, 39 (31) :9275-9284