TLR-independent control of innate immunity in Caenorhabditis elegans by the TIR domain adaptor protein TIR-1, an ortholog of human SARM

被引:365
作者
Couillault, C
Pujol, N
Reboul, J
Sabatier, L
Guichou, JF
Kohara, Y
Ewbank, JJ
机构
[1] Univ Mediterranee, CNRS, INSERM, Ctr Immunol Marseille Luminy, F-13288 Marseille 9, France
[2] Inst J Paoli I Calmettes, INSERM, U119, F-13009 Marseille, France
[3] Inst Biol Mol & Cellulaire, CNRS, UPR 9022, F-67084 Strasbourg, France
[4] Univ Montpellier I, Ctr Biochim Struct, CNRS, UMR 5048,INSERM,UMR 554, F-34090 Montpellier, France
[5] Natl Inst Genet, Mishima, Shizuoka 411, Japan
基金
美国国家卫生研究院;
关键词
D O I
10.1038/ni1060
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Both plants and animals respond to infection by synthesizing compounds that directly inhibit or kill invading pathogens. We report here the identification of infection-inducible antimicrobial peptides in Caenorhabditis elegans. Expression of two of these peptides, NLP-29 and NLP-31, was differentially regulated by fungal and bacterial infection and was controlled in part by tir-1, which encodes an ortholog of SARM, a Toll-interleukin 1 receptor (TIR) domain protein. Inactivation of tir-1 by RNA interference caused increased susceptibility to infection. We identify protein partners for TIR-1 and show that the small GTPase Rab1 and the f subunit of ATP synthase participate specifically in the control of antimicrobial peptide gene expression. As the activity of tir-1 was independent of the single nematode Toll-like receptor, TIR-1 may represent a component of a previously uncharacterized, but conserved, innate immune signaling pathway.
引用
收藏
页码:488 / 494
页数:7
相关论文
共 47 条
[31]   Identification of transforming growth factor-β-regulated genes in Caenorhabditis elegans by differential hybridization of arrayed cDNAs [J].
Mochii, M ;
Yoshida, S ;
Morita, K ;
Kohara, Y ;
Ueno, N .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (26) :15020-15025
[32]   Identification of neuropeptide-like protein gene families in Caenorhabditis elegans and other species [J].
Nathoo, AN ;
Moeller, RA ;
Westlund, BA ;
Hart, AC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (24) :14000-14005
[33]  
Nielsen H, 1997, Int J Neural Syst, V8, P581, DOI 10.1142/S0129065797000537
[34]   The Toll-IL-1 receptor adaptor family grows to five members [J].
O'Neill, LAJ ;
Fitzgerald, KA ;
Bowie, AG .
TRENDS IN IMMUNOLOGY, 2003, 24 (06) :287-290
[35]   The Drosophila Toll-9 activates a constitutive antimicrobial defense [J].
Ooi, JY ;
Yagi, Y ;
Hu, XD ;
Ip, YT .
EMBO REPORTS, 2002, 3 (01) :82-87
[36]   TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-β induction [J].
Oshiumi, H ;
Matsumoto, M ;
Funami, K ;
Akazawa, T ;
Seya, T .
NATURE IMMUNOLOGY, 2003, 4 (02) :161-167
[37]   Reverse genetic analysis of components of the Toll signaling pathway in Caenorhabditis elegans [J].
Pujol, N ;
Link, EM ;
Liu, LX ;
Kurz, CL ;
Alloing, G ;
Tan, MW ;
Ray, KP ;
Solari, R ;
Johnson, CD ;
Ewbank, JJ .
CURRENT BIOLOGY, 2001, 11 (11) :809-821
[38]   C-elegans ORFeome version 1.1:: experimental verification of the genome annotation and resource for proteome-scale protein expression [J].
Reboul, J ;
Vaglio, P ;
Rual, JF ;
Lamesch, P ;
Martinez, M ;
Armstrong, CM ;
Li, SM ;
Jacotot, L ;
Bertin, N ;
Janky, R ;
Moore, T ;
Hudson, JR ;
Hartley, JL ;
Brasch, MA ;
Vandenhaute, J ;
Boulton, S ;
Endress, GA ;
Jenna, S ;
Chevet, E ;
Papasotiropoulos, V ;
Tolias, PP ;
Ptacek, J ;
Snyder, M ;
Huang, R ;
Chance, MR ;
Lee, HM ;
Doucette-Stamm, L ;
Hill, DE ;
Vidal, M .
NATURE GENETICS, 2003, 34 (01) :35-41
[39]   Drosophila MyD88 is required for the response to fungal and Gram-positive bacterial infections [J].
Tauszig-Delamasure, S ;
Bilak, H ;
Capovilla, M ;
Hoffmann, JA ;
Imler, JL .
NATURE IMMUNOLOGY, 2002, 3 (01) :91-97
[40]   Specific interference by ingested dsRNA [J].
Timmons, L ;
Fire, A .
NATURE, 1998, 395 (6705) :854-854