Cluster analysis and mathematical programming

被引:360
作者
Hansen, P
Jaumard, B
机构
[1] ECOLE HAUTES ETUD COMMERCIALES, MONTREAL, PQ, CANADA
[2] ECOLE POLYTECH MONTREAL, MONTREAL, PQ, CANADA
基金
加拿大自然科学与工程研究理事会;
关键词
cluster analysis; hierarchy; partition;
D O I
10.1007/BF02614317
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Given a set of entities, Cluster Analysis aims at finding subsets, called clusters, which are homogeneous and/or well separated. As many types of clustering and criteria for homogeneity or separation are of interest, this is a vast field. A survey is given from a mathematical programming viewpoint. Steps of a clustering study, types of clustering and criteria are discussed. Then algorithms for hierarchical, partitioning, sequential, and additive clustering are studied. Emphasis is on solution methods, i.e., dynamic programming, graph theoretical algorithms, branch-and-bound, cutting planes, column generation and heuristics. (C) 1997 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.
引用
收藏
页码:191 / 215
页数:25
相关论文
共 118 条
[81]  
Jambu M., 1991, EXPLORATORY MULTIVAR
[82]   A DYNAMIC PROGRAMMING ALGORITHM FOR CLUSTER ANALYSIS [J].
JENSEN, RE .
OPERATIONS RESEARCH, 1969, 17 (06) :1034-&
[83]   MIN-CUT CLUSTERING [J].
JOHNSON, EL ;
MEHROTRA, A ;
NEMHAUSER, GL .
MATHEMATICAL PROGRAMMING, 1993, 62 (01) :133-151
[84]  
Kaufman L, 1990, FINDING GROUPS DATA
[85]  
KLEIN G, 1991, NAV RES LOG, V38, P447, DOI 10.1002/1520-6750(199106)38:3<447::AID-NAV3220380312>3.0.CO
[86]  
2-0
[87]   BRANCH AND BOUND CLUSTERING ALGORITHM [J].
KOONTZ, WLG ;
NARENDRA, PM ;
FUKUNAGA, K .
IEEE TRANSACTIONS ON COMPUTERS, 1975, 24 (09) :908-915
[88]   NP-HARD PROBLEMS IN HIERARCHICAL-TREE CLUSTERING [J].
KRIVANEK, M ;
MORAVEK, J .
ACTA INFORMATICA, 1986, 23 (03) :311-323
[89]   A GENERAL THEORY OF CLASSIFICATORY SORTING STRATEGIES .1. HIERARCHICAL SYSTEMS [J].
LANCE, GN ;
WILLIAMS, WT .
COMPUTER JOURNAL, 1967, 9 (04) :373-&
[90]  
LECLERC GL, 1749, COMTE BUFFON HIST NA