基于动态神经网络的风电场输出功率预测

被引:73
作者
刘瑞叶 [1 ]
黄磊 [1 ,2 ]
机构
[1] 哈尔滨工业大学电气工程及自动化学院
[2] 中国科学院广州能源研究所
基金
国家高技术研究发展计划(863计划);
关键词
风力发电; 风功率预测; 神经网络; 反馈时延神经网络; 时间序列;
D O I
暂无
中图分类号
TM614 [风能发电];
学科分类号
0807 ;
摘要
随着风电的大规模发展,准确预测风电场输出功率对于风电场的选址、大规模并网及运行具有重要的作用。文中提出了局部反馈时延神经网络和全局反馈时延神经网络2种动态神经网络预测模型,以适应风功率的时间序列特性,并与静态神经网络预测模型进行了比较。以国内北方某风电场的风功率预测为例,结合气象预报数据进行提前24h的风电输出功率预测,仿真结果表明,动态神经网络在预测具有时间序列特性的风功率时效果优于静态神经网络。
引用
收藏
页码:19 / 22+37 +37
页数:5
相关论文
共 8 条
[1]   基于小波—BP神经网络的短期风电功率预测方法 [J].
师洪涛 ;
杨静玲 ;
丁茂生 ;
王金梅 .
电力系统自动化, 2011, 35 (16) :44-48
[2]   风电场输出功率超短期预测结果分析与改进 [J].
陈颖 ;
周海 ;
王文鹏 ;
曹潇 ;
丁杰 .
电力系统自动化, 2011, 35 (15) :30-33+87
[3]   基于脊波神经网络的短期风电功率预测 [J].
茆美琴 ;
周松林 ;
苏建徽 .
电力系统自动化, 2011, 35 (07) :70-74
[4]   内蒙古电网区域风电功率预测系统 [J].
白永祥 ;
房大中 ;
侯佑华 ;
朱长胜 .
电网技术, 2010, 34 (10) :157-162
[5]   基于组合预测的风电场风速及风电机功率预测 [J].
张国强 ;
张伯明 .
电力系统自动化, 2009, 33 (18) :92-95+109
[6]   基于人工神经网络的风电功率预测 [J].
范高锋 ;
王伟胜 ;
刘纯 ;
戴慧珠 .
中国电机工程学报, 2008, (34) :118-123
[7]   风电场风速和发电功率预测研究 [J].
杨秀媛 ;
肖洋 ;
陈树勇 .
中国电机工程学报, 2005, (11) :1-5
[8]  
风电功率短期预测方法研究.[D].张臻.华南理工大学.2010, 03