基于机器学习的设备剩余寿命预测方法综述

被引:162
作者
裴洪
胡昌华
司小胜
张建勋
庞哲楠
张鹏
机构
[1] 火箭军工程大学导弹工程学院
关键词
剩余寿命预测; 机器学习; 神经网络; 支持向量机; 深度学习;
D O I
暂无
中图分类号
TH17 [机械运行与维修];
学科分类号
0802 ;
摘要
随着科学技术的发展和生产工艺的进步,当代设备日益朝着大型化、复杂化、自动化以及智能化方向发展。为保障设备安全性与可靠性,剩余寿命(Remaining useful life,RUL)预测技术受到了普遍关注,同时得到了广泛应用。传统的统计数据驱动方法受模型的选择影响明显,而机器学习具有强大的数据处理能力,并且无需确切的物理模型和专家先验知识,因而机器学习在剩余寿命预测领域表现出了广阔的应用前景。鉴于此,详细分析和阐述了基于机器学习的设备剩余寿命预测方法。根据机器学习模型结构的深度,将其分为基于浅层机器学习的方法和基于深度学习的方法。同时疏理了每类方法的发展分支与研究现状,并且总结了相应的优势和缺点,最后探讨了基于机器学习的剩余寿命预测方法的未来研究方向。
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
[31]  
Hybrid PSO–SVM-based method for forecasting of the remaining useful life for aircraft engines and evaluation of its reliability[J] . P.J. García Nieto,E. García-Gonzalo,F. Sánchez Lasheras,F.J. de Cos Juez.Reliability Engineering and System Safety . 2015
[32]   Residual life estimation based on nonlinear-multivariate Wiener processes [J].
Wang, Xiaolin ;
Balakrishnan, Narayanaswamy ;
Guo, Bo .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (09) :1742-1764
[33]  
Stochastic modelling and analysis of degradation for highly reliable products[J] . Zhi‐Sheng Ye,Min Xie.Appl. Stochastic Models Bus. Ind. . 2015 (1)
[34]  
Online sequential extreme learning machine with kernels for nonstationary time series prediction[J] . Xinying Wang,Min Han.Neurocomputing . 2014
[35]  
An integrated framework for online diagnostic and prognostic health monitoring using a multistate deterioration process[J] . Ramin Moghaddass,Ming J. Zuo.Reliability Engineering and System Safety . 2014
[36]  
Combining Relevance Vector Machines and exponential regression for bearing residual life estimation[J] . Francesco Di Maio,Kwok Leung Tsui,Enrico Zio.Mechanical Systems and Signal Processing . 2012
[37]  
Special Issue on Prognostics and Health Management[J] . Daniel Lau,Bernard Fong.Microelectronics Reliability . 2010 (2)
[38]   A prognostics and health management roadmap for information and electronics-rich systems [J].
Pecht, Michael ;
Jaai, Rubyca .
MICROELECTRONICS RELIABILITY, 2010, 50 (03) :317-323
[39]  
Remaining useful life estimation – A review on the statistical data driven approaches[J] . Xiao-Sheng Si,Wenbin Wang,Chang-Hua Hu,Dong-Hua Zhou.European Journal of Operational Research . 2010 (1)
[40]  
A data-driven fuzzy approach for predicting the remaining useful life in dynamic failure scenarios of a nuclear system[J] . Enrico Zio,Francesco Di Maio.Reliability Engineering and System Safety . 2009 (1)