基于硬约束物理信息神经网络的含水层渗透系数场反演

被引:0
作者
舒伟
蒋建国
吴吉春
机构
[1] 南京大学地球科学与工程学院,水科学系
基金
国家重点研发计划;
关键词
物理信息神经网络; 硬约束PINNs; 渗透系数场反演; 地下水建模; 承压含水层;
D O I
10.13745/j.esf.sf.2025.10.38
中图分类号
TP183 [人工神经网络与计算]; P641.7 [地下水普查与勘探];
学科分类号
070907 [水文地质学]; 140502 [人工智能];
摘要
近年来,物理信息神经网络(physics-informed neural networks, PINNs)在数值求解偏微分方程和计算流体力学等领域得到了广泛应用,并在地下水模拟中展现出初步的应用潜力。现有研究中,PINNs对地下水模型边界条件的处理通常采用软约束算法,通过边界条件误差最小化来近似满足物理约束。然而,能够进一步提升求解精度和稳定性的硬约束算法在该领域的应用仍较为有限。为此,本文引入PINNs硬约束方法,提出了一种同时考虑定水头边界和隔水边界条件的PINNs硬约束算法,并以二维承压含水层的渗透系数场反演为例,对比分析了硬约束PINNs相较于软约束PINNs在提高渗透系数场反演精度方面的优势。结果表明,所提出的硬约束PINNs方法的反演平均相对误差相比软约束PINNs降低了75%,且相较于仅考虑定水头边界的硬约束PINNs反演平均相对误差减少了60%。此外,该方法能够有效减少训练所需样本数量和超参数数量,降低人为因素对模型训练的影响,提升了训练效率。因此,该硬约束PINNs方法在含水层渗透系数场反演中展现出良好的精度与效率,具有良好的推广应用前景。
引用
收藏
页码:500 / 510
页数:11
相关论文
共 28 条
[1]  
Respecting causality for training physics-informed neural networks.[J].Sifan Wang;Shyam Sankaran;Paris Perdikaris.Computer Methods in Applied Mechanics and Engineering.2024,
[2]   Construction and approximation for a class of feedforward neural networks with sigmoidal function [J].
Meng, Xinhong ;
Yan, Jinyao ;
Ye, Hailiang ;
Cao, Feilong .
INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2023, 21 (06)
[3]   Recent Advances in Stochastic Gradient Descent in Deep Learning [J].
Tian, Yingjie ;
Zhang, Yuqi ;
Zhang, Haibin .
MATHEMATICS, 2023, 11 (03)
[4]   Scientific Machine Learning Through Physics-Informed Neural Networks: Where we are and What's Next [J].
Cuomo, Salvatore ;
Di Cola, Vincenzo Schiano ;
Giampaolo, Fabio ;
Rozza, Gianluigi ;
Raissi, Maziar ;
Piccialli, Francesco .
JOURNAL OF SCIENTIFIC COMPUTING, 2022, 92 (03)
[5]   GW-PINN: A deep learning algorithm for solving groundwater flow equations [J].
Zhang, Xiaoping ;
Zhu, Yan ;
Wang, Jing ;
Ju, Lili ;
Qian, Yingzhi ;
Ye, Ming ;
Yang, Jinzhong .
ADVANCES IN WATER RESOURCES, 2022, 165
[6]   Exact imposition of boundary conditions with distance functions in physics-informed deep neural networks [J].
Sukumar, N. ;
Srivastava, Ankit .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 389
[7]   Stochastic deep collocation method based on neural architecture search and transfer learning for heterogeneous porous media [J].
Guo, Hongwei ;
Zhuang, Xiaoying ;
Chen, Pengwan ;
Alajlan, Naif ;
Rabczuk, Timon .
ENGINEERING WITH COMPUTERS, 2022, 38 (06) :5173-5198
[8]  
Uncovering turbulent plasma dynamics via deep learning from partial observations..[J].Mathews A;Francisquez M;Hughes J W;Hatch D R;Zhu B;Rogers B N.Physical review. E.2021, 2-2
[9]   Review of deep learning: concepts, CNN architectures, challenges, applications, future directions [J].
Alzubaidi, Laith ;
Zhang, Jinglan ;
Humaidi, Amjad J. ;
Al-Dujaili, Ayad ;
Duan, Ye ;
Al-Shamma, Omran ;
Santamaria, J. ;
Fadhel, Mohammed A. ;
Al-Amidie, Muthana ;
Farhan, Laith .
JOURNAL OF BIG DATA, 2021, 8 (01)
[10]   A method for representing periodic functions and enforcing exactly periodic boundary conditions with deep neural networks [J].
Dong, Suchuan ;
Ni, Naxian .
JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 435