3D打印仿生生物陶瓷支架修复颌骨缺损的特点与策略

被引:1
作者
熊嘉颖
沈洁仪
吕佳虹
机构
[1] 暨南大学口腔医学院
基金
广州市科技计划项目;
关键词
颌骨缺损; 3D打印; 仿生结构; 生物陶瓷; 支架; 骨修复; 增材制造; 生物活性;
D O I
暂无
中图分类号
R782.4 [口腔颌面部损伤]; R318.08 [生物材料学];
学科分类号
100103 [病原生物学]; 100213 [耳鼻咽喉科学];
摘要
背景:3D打印仿生结构陶瓷支架因可个性化定制、生物相容性优异及成骨活性突出,成为颌骨缺损修复的理想选择。目的:系统综述仿生结构3D打印仿生生物陶瓷支架在颌骨修复中的研究进展。方法:检索PubMed数据库及中国知网建库至2025年的文献,中文检索词为“3D打印,支架,仿生,生物陶瓷,颌骨修复”,英文检索词为“3D printing, scaffold,bionic,biomimetic,ceramic,maxillofacial repair,jaw repair”,筛选后纳入68篇文献进行归纳分析。结果与结论:颌骨缺损修复需兼顾解剖形态重建与功能性恢复,3D打印仿生生物陶瓷支架通过仿生设计(如孔隙结构、力学适配)可精准匹配缺损区域,生物活性与骨传导性显著优于传统移植材料(如自体骨)。特定仿骨结构(如骨小梁模拟)和自然界启发的仿生结构可增强支架的颌骨整合效率。当前3D打印仿生陶瓷支架在颌骨修复中的研究仍处于起步阶段,初步验证了该支架的机械稳定性与生物安全性,但长期降解动力学、免疫反应及大规模临床应用的可行性仍需深入探索。
引用
收藏
页码:3709 / 3716
页数:8
相关论文
共 63 条
[21]  
骨缺损修复生物材料与骨再生.[J].蒋欣泉;.中华口腔医学杂志.2017, 10
[22]   High-Strength Hydroxyapatite Scaffolds with Minimal Surface Macrostructures for Load-Bearing Bone Regeneration [J].
Zhang, Qiang ;
Ma, Limin ;
Ji, Xiongfa ;
He, Yue ;
Cui, Yue ;
Liu, Xuemin ;
Xuan, Chengkai ;
Wang, Zhenxing ;
Yang, Wei ;
Chai, Muyuan ;
Shi, Xuetao .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (33)
[23]  
Triply periodic minimal surface (TPMS) porous structures: from multi-scale design; precise additive manufacturing to multidisciplinary applications.[J].Feng Jiawei;Fu Jianzhong;Yao Xinhua;He Yong.International Journal of Extreme Manufacturing.2022, 2
[24]  
3D-printed bioactive ceramic scaffolds with biomimetic micro/nano-HAp surfaces mediated cell fate and promoted bone augmentation of the bone–implant interface in vivo.[J].Liu Xiao;Miao Yali;Liang Haifeng;Diao Jingjing;Hao Lijing;Shi Zhifeng;Zhao Naru;Wang Yingjun.Bioactive Materials.2022,
[25]   3D printing of sponge spicules-inspired flexible bioceramic-based scaffolds [J].
Yang, Zhibo ;
Xue, Jianmin ;
Li, Tian ;
Zhai, Dong ;
Yu, Xiaopeng ;
Huan, Zhiguang ;
Wu, Chengtie .
BIOFABRICATION, 2022, 14 (03)
[26]  
One-step preparation of functionally hierarchical and structurally hierarchical biomimetic bioceramics composed of porous hydroxyapatite and carbon fiber reinforced hydroxyapatite composites.[J].Zhao Xueni;Fan Qiang;Chen Xueyan;Yang Zhi;Wei Sensen;Ma Linlin;Liu Ao;Zhao Zhenyang.Materials Chemistry and Physics.2022, prepublish
[27]   Direct Ink Writing: A 3D Printing Technology for Diverse Materials [J].
Saadi, M. A. S. R. ;
Maguire, Alianna ;
Pottackal, Neethu T. ;
Thakur, Md Shajedul Hoque ;
Ikram, Maruf Md ;
Hart, A. John ;
Ajayan, Pulickel M. ;
Rahman, Muhammad M. .
ADVANCED MATERIALS, 2022, 34 (28)
[28]   Harnessing 4D Printing Bioscaffolds for Advanced Orthopedics [J].
Chen, Xi ;
Han, Shuyan ;
Wu, Weihui ;
Wu, Zihan ;
Yuan, Yuan ;
Wu, Jun ;
Liu, Changsheng .
SMALL, 2022, 18 (36)
[29]  
Transforming the Degradation Rate of β-tricalcium Phosphate Bone Replacement Using 3-Dimensional Printing.[J].Shen Chen;Wang M. Maxime;Witek Lukasz;Tovar Nick;Cronstein N. Bruce;Torroni Andrea;Flores L. Roberto;Coelho G. Paulo.Annals of Plastic Surgery.2021,
[30]   Strategies for large bone defect reconstruction after trauma, infections or tumour excision: a comprehensive review of the literature [J].
Migliorini, Filippo ;
La Padula, Gerardo ;
Torsiello, Ernesto ;
Spiezia, Filippo ;
Oliva, Francesco ;
Maffulli, Nicola .
EUROPEAN JOURNAL OF MEDICAL RESEARCH, 2021, 26 (01)