FREE FERMIONIC ELLIPTIC REFLECTION MATRICES AND QUANTUM GROUP INVARIANCE

被引:17
作者
CUERNO, R
GONZALEZRUIZ, A
机构
[1] UNIV PARIS 06,LPTHE,F-75252 PARIS 05,FRANCE
[2] UNIV COMPLUTENSE MADRID,DEPT FIS TEOR,E-28040 MADRID,SPAIN
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1993年 / 26卷 / 14期
关键词
D O I
10.1088/0305-4470/26/14/003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Diagonal solutions for the reflection matrices associated to the elliptic R matrix of the eight-vertex free fermion model are presented. They lead through the second derivative of the open chain transfer matrix to an XY Hamiltonian in a magnetic field which is invariant under a quantum deformed Clifford-Hopf algebra,
引用
收藏
页码:L605 / L610
页数:6
相关论文
共 23 条
[11]   DIAGONALIZATION OF TRANSFER MATRIX OF FREE-FERMION MODEL .2. [J].
FELDERHOF, BU .
PHYSICA, 1973, 66 (02) :279-297
[12]   A 2-PARAMETER DEFORMATION OF THE SU (1/1) SUPERALGEBRA AND THE XY QUANTUM CHAIN IN A MAGNETIC-FIELD [J].
HINRICHSEN, H ;
RITTENBERG, V .
PHYSICS LETTERS B, 1992, 275 (3-4) :350-354
[13]   BAXTERIZATION [J].
JONES, VFR .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1991, 6 (12) :2035-2043
[14]   FREE FERMIONS AND THE ALEXANDER-CONWAY POLYNOMIAL [J].
KAUFFMAN, LH ;
SALEUR, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 141 (02) :293-327
[15]   DYNAMICAL CHARGES IN QUANTIZED RENORMALIZED MASSIVE THIRRING MODEL [J].
LUSCHER, M .
NUCLEAR PHYSICS B, 1976, 117 (02) :475-492
[16]   INTEGRABILITY OF OPEN SPIN CHAINS WITH QUANTUM ALGEBRA SYMMETRY (vol 6, pg 5231, 1991) [J].
MEZINCESCU, L ;
NEPOMECHIE, RI .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1992, 7 (22) :5657-5659
[17]   INTEGRABLE OPEN SPIN CHAINS WITH NONSYMMETRICAL R-MATRICES [J].
MEZINCESCU, L ;
NEPOMECHIE, RI .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (01) :L17-L23
[18]   INTEGRABILITY OF OPEN SPIN CHAINS WITH QUANTUM ALGEBRA SYMMETRY [J].
MEZINCESCU, L ;
NEPOMECHIE, RI .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1991, 6 (29) :5231-5248
[19]   THE FREE-FERMION MODEL IN PRESENCE OF FIELD RELATED TO THE QUANTUM GROUP UQ((S)OVER-CAPL2) OF AFFINE TYPE AND THE MULTIVARIABLE ALEXANDER POLYNOMIAL OF LINKS [J].
MURAKAMI, J .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1992, 7 :765-772
[20]   QUANTUM-FIELD THEORY FOR THE MULTIVARIABLE ALEXANDER-CONWAY POLYNOMIAL [J].
ROZANSKY, L ;
SALEUR, H .
NUCLEAR PHYSICS B, 1992, 376 (03) :461-509