EXCESSIVE INSULIN-RECEPTOR SERINE PHOSPHORYLATION IN CULTURED FIBROBLASTS AND IN SKELETAL-MUSCLE - A POTENTIAL MECHANISM FOR INSULIN-RESISTANCE IN THE POLYCYSTIC-OVARY-SYNDROME

被引:409
作者
DUNAIF, A [1 ]
XIA, JR [1 ]
BOOK, CB [1 ]
SCHENKER, E [1 ]
TANG, ZC [1 ]
机构
[1] MT SINAI SCH MED,DEPT MED,NEW YORK,NY 10029
关键词
INSULIN RECEPTORS; SIGNAL TRANSDUCTION; PHOSPHOSERINE; POLYCYSTIC OVARY SYNDROME; INSULIN RESISTANCE;
D O I
10.1172/JCI118126
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
We investigated the cellular mechanisms of the unique disorder of insulin action found in the polycystic ovary syndrome (PCOS). Approximately 50% of PCOS women (PCOS-Ser) had a significant increase in insulin-independent beta-subunit [P-32]phosphate incorporation (3.7-fold, P < 0.05 vs other groups) in skin fibroblast insulin receptors that was present in serine residues while insulin-induced tyrosine phosphorylation was decreased (both P < 0.05 vs other groups). PCOS skeletal muscle insulin receptors had the same abnormal phosphorylation pattern. The remaining PCOS women (PCOS-n1) had basal and insulin-stimulated receptor autophosphorylation similar to control. Phosphorylation of the artificial substrate poly GLU4:TYR1 by the PCOS-Ser insulin receptors was significantly decreased (P < 0.05) compared to control and PCOS-n1 receptors. The factor responsible for excessive serine phosphorylation appeared to be extrinsic to the receptor since no insulin receptor gene mutations were identified, immunoprecipitation before autophosphorylation corrected the phosphorylation defect and control insulin receptors mixed with lectin eluates from affected PCOS fibroblasts displayed increased serine phosphorylation. Our findings suggest that increased insulin receptor serine phosphorylation decreases its protein tyrosine kinase activity and is one mechanism for the post-binding defect in insulin action characteristic of PCOS.
引用
收藏
页码:801 / 810
页数:10
相关论文
共 66 条
[61]   HUMAN INSULIN-RECEPTOR AND ITS RELATIONSHIP TO THE TYROSINE KINASE FAMILY OF ONCOGENES [J].
ULLRICH, A ;
BELL, JR ;
CHEN, EY ;
HERRERA, R ;
PETRUZZELLI, LM ;
DULL, TJ ;
GRAY, A ;
COUSSENS, L ;
LIAO, YC ;
TSUBOKAWA, M ;
MASON, A ;
SEEBURG, PH ;
GRUNFELD, C ;
ROSEN, OM ;
RAMACHANDRAN, J .
NATURE, 1985, 313 (6005) :756-761
[62]   ABNORMAL ACTIVATION OF GLYCOGEN-SYNTHESIS IN FIBROBLASTS FROM NIDDM SUBJECTS - EVIDENCE FOR AN ABNORMALITY SPECIFIC TO GLUCOSE-METABOLISM [J].
WELLS, AM ;
SUTCLIFFE, IC ;
JOHNSON, AB ;
TAYLOR, R .
DIABETES, 1993, 42 (04) :583-589
[63]  
WHITE MF, 1985, J BIOL CHEM, V260, P9470
[64]   HIGH-LEVEL EXPRESSION OF HUMAN INSULIN-RECEPTOR CDNA IN MOUSE NIH 3T3 CELLS [J].
WHITTAKER, J ;
OKAMOTO, AK ;
THYS, R ;
BELL, GI ;
STEINER, DF ;
HOFMANN, CA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1987, 84 (15) :5237-5241
[65]  
YAMADA K, 1992, J BIOL CHEM, V267, P12452
[66]   INSULIN STIMULATES PHOSPHORYLATION OF SERINE RESIDUES IN SOLUBLE INSULIN-RECEPTORS [J].
ZICK, Y ;
GRUNBERGER, G ;
PODSKALNY, JM ;
MONCADA, V ;
TAYLOR, SI ;
GORDEN, P ;
ROTH, J .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1983, 116 (03) :1129-1135