THE GLS TRANSFORMATION MATRIX AND A SEMI-RECURSIVE ESTIMATOR FOR THE LINEAR-REGRESSION MODEL WITH ARMA ERRORS

被引:14
作者
GALBRAITH, JW
ZINDEWALSH, V
机构
关键词
D O I
10.1017/S0266466600010756
中图分类号
F [经济];
学科分类号
02 ;
摘要
For a general stationary ARMA(p,q) process u we derive the exact form of the orthogonalizing matrix R such that R'R = SIGMA(-1), where SIGMA = E(uu') is the covariance matrix of u, generalizing the known formulae for AR(p) processes. In a linear regression model with an ARMA(p,q) error process, transforming the data by R yields a regression model with white-noise errors. We also consider an application to semi-recursive (being recursive for the model parameters, but not for the parameters of the error process) estimation.
引用
收藏
页码:95 / 111
页数:17
相关论文
共 22 条
[1]  
Amemiya T, 1986, ADV ECONOMETRICS
[2]  
BOX GEP, 1970, TIME SERIES ANAL FOR
[3]  
BROWN RL, 1975, J ROY STAT SOC B MET, V37, P149
[5]   A LEVINSON DURBIN RECURSION FOR AUTOREGRESSIVE-MOVING AVERAGE PROCESSES [J].
FRANKE, J .
BIOMETRIKA, 1985, 72 (03) :573-581
[6]   REGRESSION PROCEDURES FOR ARMA ESTIMATION [J].
HANNAN, EJ ;
MCDOUGALL, AJ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1988, 83 (402) :490-498
[7]  
HANNAN EJ, 1982, BIOMETRIKA, V69, P81, DOI 10.1093/biomet/69.1.81
[8]  
HANNAN EJ, 1986, BIOMETRIKA, V73, P119
[9]  
HANNAN EJ, 1988, STATISTICAL THEORY L
[10]  
HANNAN EJ, 1984, BIOMETRIKA, V72, P273