INFRARED BOUNDS, PHASE-TRANSITIONS AND CONTINUOUS SYMMETRY BREAKING

被引:341
作者
FROHLICH, J
SIMON, B
SPENCER, T
机构
[1] PRINCETON UNIV,DEPT MATH,PRINCETON,NJ 08540
[2] ROCKEFELLER UNIV,DEPT MATH,NEW YORK,NY 10021
关键词
D O I
10.1007/BF01608557
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:79 / 95
页数:17
相关论文
共 43 条
[1]  
[Anonymous], 1974, PHASE TRANSITIONS CR
[2]   PHASE-TRANSITIONS IN ANISOTROPIC CLASSICAL HEISENBERG FERROMAGNETS [J].
BORTZ, AB ;
GRIFFITHS, RB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1972, 26 (02) :102-+
[3]   THERE ARE NO GOLDSTONE BOSONS IN 2 DIMENSIONS [J].
COLEMAN, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1973, 31 (04) :259-264
[4]   ABSENCE OF BREAKDOWN OF CONTINUOUS SYMMETRY IN 2-DIMENSIONAL MODELS OF STATISTICAL PHYSICS [J].
DOBRUSHIN, RL ;
SHLOSMAN, SB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1975, 42 (01) :31-40
[5]   MULTICOMPONENT FIELD-THEORIES AND CLASSICAL ROTATORS [J].
DUNLOP, F ;
NEWMAN, CM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1975, 44 (03) :223-235
[6]  
Ezawa H., 1967, COMMUN MATH PHYS, V5, P330
[7]  
FELDMAN J, IN PRESS
[8]   PHASE-TRANSITIONS AND CONTINUOUS SYMMETRY BREAKING [J].
FROHLICH, J ;
SIMON, B ;
SPENCER, T .
PHYSICAL REVIEW LETTERS, 1976, 36 (14) :804-806
[9]  
FROHLICH J, P MARSEILLE C
[10]  
FROHLICH J, PURE STATES GENERAL