BOOTSTRAPPING QUANTILE REGRESSION-ESTIMATORS

被引:135
作者
HAHN, JY
机构
关键词
D O I
10.1017/S0266466600009051
中图分类号
F [经济];
学科分类号
02 ;
摘要
The asymptotic variance matrix of the quantile regression estimator depends on the density of the error. For both deterministic and random regressors, the bootstrap distribution is shown to converge weakly to the limit distribution of the quantile regression estimator in probability. Thus, the confidence intervals constructed by the bootstrap percentile method have asymptotically correct coverage probabilities.
引用
收藏
页码:105 / 121
页数:17
相关论文
共 21 条
[1]  
[Anonymous], 1983, LEAST ABSOLUTE DEVIA
[2]  
Arcones M. A., 1992, EXPLORING LIMITS BOO, P13
[3]   A NOTE ON BOOTSTRAPPING THE VARIANCE OF SAMPLE QUANTILE [J].
BABU, GJ .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1986, 38 (03) :439-443
[4]  
Barnett WA, 1991, PROC 5 INT S EC THEO, P493
[5]   SOME ASYMPTOTIC THEORY FOR THE BOOTSTRAP [J].
BICKEL, PJ ;
FREEDMAN, DA .
ANNALS OF STATISTICS, 1981, 9 (06) :1196-1217
[6]  
Buchinsky M., 1991, THEORY PRACTICE QUAN
[7]  
CHAMBERLAIN G, 1991, QUANTILE REGRESSION
[8]  
Chung K. L., 1974, PROBABILITY MATH STA, V21
[9]  
Efron B., 1982, CBMS NSF REGIONAL C
[10]   A NOTE ON BOOTSTRAPPING THE SAMPLE MEDIAN [J].
GHOSH, M ;
PARR, WC ;
SINGH, K ;
BABU, GJ .
ANNALS OF STATISTICS, 1984, 12 (03) :1130-1135