ORGANIZATION OF THE ENZYMATIC DOMAINS IN THE MULTIFUNCTIONAL POLYKETIDE SYNTHASE INVOLVED IN ERYTHROMYCIN FORMATION IN SACCHAROPOLYSPORA-ERYTHRAEA

被引:211
作者
DONADIO, S [1 ]
KATZ, L [1 ]
机构
[1] ABBOTT LABS,D-93D,1 ABBOTT PK RD,ABBOTT PK,N CHICAGO,IL 60064
关键词
FAS; FATTY ACIDS; MACROLIDE ANTIBIOTIC; SEQUENCE ALIGNMENTS; STREPTOMYCES;
D O I
10.1016/0378-1119(92)90602-L
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Localization of the enzymatic domains in the three multifunctional polypeptides from Saccharopolyspora erythraea involved in the formation of the polyketide portion of the macrolide antibiotic erythromycin was determined by computer-assisted analysis. Comparison of the six synthase units (SU) from the eryA genes with each other and with mono- and multifunctional fatty acid and polyketide synthases established the extent of each beta-ketoacyl acyl-carrier protein (ACP) synthase, acyl-transferase, beta-ketoreductase, ACP, and thioesterase domain. The extent of the enoyl reductase (ER) domain was established by detecting similarity to other sequences in the database. A segment containing the putative dehydratase (DH) domain in EryAII, with a potential active-site histidine residue, was also found. The finding of conservation of a portion of the DH-ER interdomain region in the other five SU, which lack these two functions, suggests a possible evolutionary path for the generation of the six SU.
引用
收藏
页码:51 / 60
页数:10
相关论文
共 36 条
[1]   MOLECULAR-CLONING AND SEQUENCING OF CDNAS ENCODING THE ENTIRE RAT FATTY-ACID SYNTHASE [J].
AMY, CM ;
WITKOWSKI, A ;
NAGGERT, J ;
WILLIAMS, B ;
RANDHAWA, Z ;
SMITH, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (09) :3114-3118
[2]   THE MULTIFUNCTIONAL 6-METHYLSALICYLIC ACID SYNTHASE GENE OF PENICILLIUM-PATULUM - ITS GENE STRUCTURE RELATIVE TO THAT OF OTHER POLYKETIDE SYNTHASES [J].
BECK, J ;
RIPKA, S ;
SIEGNER, A ;
SCHILTZ, E ;
SCHWEIZER, E .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1990, 192 (02) :487-498
[3]   ANALYSIS OF THE NUCLEOTIDE-SEQUENCE OF THE STREPTOMYCES-GLAUCESCENS TCML GENES PROVIDES KEY INFORMATION ABOUT THE ENZYMOLOGY OF POLYKETIDE ANTIBIOTIC BIOSYNTHESIS [J].
BIBB, MJ ;
BIRO, S ;
MOTAMEDI, H ;
COLLINS, JF ;
HUTCHINSON, CR .
EMBO JOURNAL, 1989, 8 (09) :2727-2736
[4]  
Bloch K., 1971, ENZYMES, V5, P441
[5]  
CHIRALA SS, 1987, J BIOL CHEM, V262, P4321
[6]   AN UNUSUALLY LARGE MULTIFUNCTIONAL POLYPEPTIDE IN THE ERYTHROMYCIN-PRODUCING POLYKETIDE SYNTHASE OF SACCHAROPOLYSPORA-ERYTHRAEA [J].
CORTES, J ;
HAYDOCK, SF ;
ROBERTS, GA ;
BEVITT, DJ ;
LEADLAY, PF .
NATURE, 1990, 348 (6297) :176-178
[7]  
CRONAN JE, 1988, J BIOL CHEM, V263, P4641
[8]   SPORE COLOR IN STREPTOMYCES-COELICOLOR A3(2) INVOLVES THE DEVELOPMENTALLY REGULATED SYNTHESIS OF A COMPOUND BIOSYNTHETICALLY RELATED TO POLYKETIDE ANTIBIOTICS [J].
DAVIS, NK ;
CHATER, KF .
MOLECULAR MICROBIOLOGY, 1990, 4 (10) :1679-1691
[9]   NUCLEOTIDE-SEQUENCE OF RHIZOBIUM-MELILOTI RCR2011 GENES INVOLVED IN HOST SPECIFICITY OF NODULATION [J].
DEBELLE, F ;
SHARMA, SB .
NUCLEIC ACIDS RESEARCH, 1986, 14 (18) :7453-7472
[10]   A COMPREHENSIVE SET OF SEQUENCE-ANALYSIS PROGRAMS FOR THE VAX [J].
DEVEREUX, J ;
HAEBERLI, P ;
SMITHIES, O .
NUCLEIC ACIDS RESEARCH, 1984, 12 (01) :387-395