NONENZYMATIC GLYCOSYLATION IN-VITRO AND IN BOVINE ENDOTHELIAL-CELLS ALTERS BASIC FIBROBLAST GROWTH-FACTOR ACTIVITY - A MODEL FOR INTRACELLULAR GLYCOSYLATION IN DIABETES

被引:310
作者
GIARDINO, I
EDELSTEIN, D
BROWNLEE, M
机构
[1] YESHIVA UNIV ALBERT EINSTEIN COLL MED, DIABET RES CTR, BRONX, NY 10461 USA
[2] YESHIVA UNIV ALBERT EINSTEIN COLL MED, DEPT MED, BRONX, NY 10461 USA
关键词
GLUCOSE; ADVANCED GLYCOSYLATION END PRODUCTS; HEPARIN; MITOGENS; CYTOKINES;
D O I
10.1172/JCI117296
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Intracellular sugars are more reactive glycosylating agents than glucose. In vitro nonenzymatic glycosylation of basic fibroblast growth factor (bFGF) by fructose, glucose-6-phosphate (G6P), or glyceraldehyde-3-phosphate (G3P) reduced high affinity heparin-binding activity of recombinant bFGF by 73, 77, and 89%, respectively. Mitogenic activity was reduced 40, 50, and 90%. To investigate the effects of bFGF glycosylation in GM7373 endothelial cells, we first demonstrated that GLUT-1 transporters were not downregulated by increased glucose concentration. In 30 mM glucose, the rate of glucose transport increased 11.6-fold, and the intracellular glucose concentration increased sixfold at 24 h and fivefold at 168 h. The level of total cytosolic protein modified by advanced glycosylation endproducts (AGEs) was increased 13.8-fold at 168 h. Under these conditions, mitogenic activity of endothelial cell cytosol was reduced 70%. Anti-bFGF antibody completely neutralized the mitogenic activity at both 5 and 30 mM glucose, demonstrating that all the mitogenic activity was due to bFGF. Immunoblotting and ELISA showed that 30 mM glucose did not decrease detectable bFGF protein, suggesting that the marked decrease in bFGF mitogenic activity resulted from posttranslational modification of bFGF induced by elevated glucose concentration. Cytosolic AGE-bFGF was increased 6.1-fold at 168 h. These data are consistent with the hypothesis that nonenzymatic glycosylation of intracellular protein alters vascular cell function.
引用
收藏
页码:110 / 117
页数:8
相关论文
共 66 条
[1]  
ARAKI N, 1992, J BIOL CHEM, V267, P10211
[3]   RECEPTOR-BINDING AND HEPARIN-BINDING DOMAINS OF BASIC FIBROBLAST GROWTH-FACTOR [J].
BAIRD, A ;
SCHUBERT, D ;
LING, N ;
GUILLEMIN, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1988, 85 (07) :2324-2328
[4]   SORBINIL PREVENTS GLOMERULAR HYPERPERFUSION IN DIABETIC RATS [J].
BANK, N ;
MOWER, P ;
AYNEDJIAN, HS ;
WILKES, BM ;
SILVERMAN, S .
AMERICAN JOURNAL OF PHYSIOLOGY, 1989, 256 (06) :F1000-F1006
[5]   ROLE OF OXIDATIVE STRESS IN DEVELOPMENT OF COMPLICATIONS IN DIABETES [J].
BAYNES, JW .
DIABETES, 1991, 40 (04) :405-412
[6]   DECREASED EXPRESSION OF THE INSULIN-RESPONSIVE GLUCOSE TRANSPORTER IN DIABETES AND FASTING [J].
BERGER, J ;
BISWAS, C ;
VICARIO, PP ;
STROUT, HV ;
SAPERSTEIN, R ;
PILCH, PF .
NATURE, 1989, 340 (6228) :70-72
[7]  
BISCHOFF J, 1987, J BIOL CHEM, V262, P11825
[8]   RADIOMETRIC ASSAYS FOR GLYCEROL, GLUCOSE, AND GLYCOGEN [J].
BRADLEY, DC ;
KASLOW, HR .
ANALYTICAL BIOCHEMISTRY, 1989, 180 (01) :11-16
[9]   COVALENT ATTACHMENT OF SOLUBLE-PROTEINS BY NONENZYMATICALLY GLYCOSYLATED COLLAGEN - ROLE IN THE INSITU FORMATION OF IMMUNE-COMPLEXES [J].
BROWNLEE, M ;
PONGOR, S ;
CERAMI, A .
JOURNAL OF EXPERIMENTAL MEDICINE, 1983, 158 (05) :1739-1744
[10]   NONENZYMATIC GLYCOSYLATION PRODUCTS ON COLLAGEN COVALENTLY TRAP LOW-DENSITY LIPOPROTEIN [J].
BROWNLEE, M ;
VLASSARA, H ;
CERAMI, A .
DIABETES, 1985, 34 (09) :938-941