共 18 条
STREAMLINED APPROACH TO CREATING YEAST ARTIFICIAL CHROMOSOME LIBRARIES FROM SPECIALIZED CELL SOURCES
被引:8
作者:
FEINGOLD, JM
[1
]
OGDEN, SD
[1
]
DENNY, CT
[1
]
机构:
[1] UNIV CALIF LOS ANGELES,MED CTR,JONSSON COMPREHENS CANC CTR,LOS ANGELES,CA 90024
来源:
关键词:
D O I:
10.1073/pnas.87.21.8637
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
The study of tumor-specific chromosomal abnormalities has been severely impeded by an inability to link cytogenetic to molecular data. Restriction fragment length polymorphism mapping of any particular chromosomal rearrangement to the resolution limit of genetic methodology generates sets of probes that frequently are still too widely spaced to render the rearrangement breakpoints accessible to molecular isolation. The stable propagation of genomic fragments of up to one million base pairs in size as yeast artificial chromosomes (YACs) represents an important development in this regard. However, existing YAC libraries have been made from karyotypically normal sources making the localization and cloning of specific rearrangement breakpoints much more difficult. As a solution to this problem, we present an improved method for creating YAC libraries that can utilize specialized tumor-derived materials and that can be executed effectively in a small laboratory setting. Procedures that enabled more consistent DNA insert size selection and enhanced yeast transformation frequency were employed to generate a human YAC library from a neuroepithelioma cell line containing a characteristic t(11;22) chromosomal translocation. Approximately 40,000 colonies with an average insert size of 330 kilobase pairs were created. This library was screened with two single-copy probes that bracket the translocation breakpoint. YAC clones ranging from 370 to 550 kilobase pairs that were specific for each single-copy probe were identified. Specialized YAC libraries will make many more tumor-specific chromosomal abnormalities accessible to molecular isolation.
引用
收藏
页码:8637 / 8641
页数:5
相关论文