REACTIVE MICROGLIA IN CEREBRAL-ISCHEMIA - AN EARLY MEDIATOR OF TISSUE-DAMAGE

被引:173
作者
GEHRMANN, J
BANATI, RB
WIESSNERT, C
HOSSMANN, KA
KREUTZBERG, GW
机构
[1] UNIV ZURICH HOSP, INST CLIN PATHOL, DEPT PATHOL, CH-8091 ZURICH, SWITZERLAND
[2] MAX PLANCK INST PSYCHIAT, MARTINSRIED, GERMANY
[3] MAX PLANCK INST NEUROL RES, COLOGNE, GERMANY
关键词
NEURONAL CELL DEATH; CYTOTOXICITY; ASTROCYTES; GROWTH FACTORS; CYTOKINES; NEUROPROTECTION; ISCHEMIA;
D O I
10.1111/j.1365-2990.1995.tb01062.x
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Microglial cell activation is a rapidly occurring cellular response to cerebral ischaemia. Microglia proliferate, are recruited to the site of lesion, upregulate the expression of several surface molecules including major histocompatibility complex class I and II antigens, complement receptor and the amyloid precursor protein (APP) as well as newly expressed cytokines, e.g. interleukin-1 and transforming growth factor beta 1. The ischaemia-induced production of APP may contribute to amyloid deposition in the aged brain under conditions of hypofusion. Ultrastructurally, microglia transform into phagocytes removing necrotic neurons but still respecting the integrity of eventually surviving neurons even in the close vicinity of necrotic neurons. Microglial activation starts within a few minutes after ischaemia and thus precedes the morphologically detectable neuronal damage. It additionally involves a transient generalized response within the first 24 hours post-ischaemia even at sites without eventual neuronal cell death. In functional terms, the microglial reaction appears to be a double-edged sword in ischaemia. Activated microglia may exert a cytotoxic effector function by releasing reactive oxygen species, nitric oxide, proteinases or inflammatory cytokines. All of these cytotoxic compounds may cause bystander damage following ischaemia. Pharmacological suppression of microglial activation after ischaemia has accordingly attenuated the extent of cell death and tissue damage. However, activated microglia support tissue repair by secreting factors such as transforming growth factor pr which may limit tissue damage as well as suppress astroglial scar formation. In line with ultrastructural observations microglial activation in ischaemia is a strictly controlled event. By secreting cytokines and growth factors activated microglia most likely serve seemingly opposed functions in ischaemia, i.e., maintenance as well as removal of injured neurons. Post-ischaemic pharmacological modulation of microglial intervention in the cascade of events that lead to neuronal necrosis may help to improve the structural and functional outcome following CNS ischaemia.
引用
收藏
页码:277 / 289
页数:13
相关论文
共 104 条
[1]   SELECTIVE INDUCTION OF KUNITZ-TYPE PROTEASE INHIBITOR DOMAIN-CONTAINING AMYLOID PRECURSOR PROTEIN MESSENGER-RNA AFTER PERSISTENT FOCAL ISCHEMIA IN RAT CEREBRAL-CORTEX [J].
ABE, K ;
TANZI, RE ;
KOGURE, K .
NEUROSCIENCE LETTERS, 1991, 125 (02) :172-174
[2]   Concerning unsual medical cases in old age [J].
Alzheimer, A .
ZEITSCHRIFT FUR DIE GESAMTE NEUROLOGIE UND PSYCHIATRIE, 1911, 4 :356-385
[3]   DETECTION OF LYSOSOMAL CYSTEINE PROTEINASES IN MICROGLIA - FLOW CYTOMETRIC MEASUREMENT AND HISTOCHEMICAL-LOCALIZATION OF CATHEPSIN B AND L [J].
BANATI, RB ;
ROTHE, G ;
VALET, G ;
KREUTZBERG, GW .
GLIA, 1993, 7 (02) :183-191
[4]   SURVEILLANCE, INTERVENTION AND CYTOTOXICITY - IS THERE A PROTECTIVE ROLE OF MICROGLIA [J].
BANATI, RB ;
GRAEBER, MB .
DEVELOPMENTAL NEUROSCIENCE, 1994, 16 (3-4) :114-127
[5]   MODULATION OF INTRACELLULAR FORMATION OF REACTIVE OXYGEN INTERMEDIATES IN PERITONEAL-MACROPHAGES AND MICROGLIA/BRAIN MACROPHAGES BY PROPENTOFYLLINE [J].
BANATI, RB ;
SCHUBERT, P ;
ROTHE, G ;
GEHRMANN, J ;
RUDOLPHI, K ;
VALET, G ;
KREUTZBERG, GW .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 1994, 14 (01) :145-149
[6]   RESPIRATORY BURST ACTIVITY IN BRAIN MACROPHAGES - A FLOW CYTOMETRIC STUDY ON CULTURED RAT MICROGLIA [J].
BANATI, RB ;
ROTHE, G ;
VALET, G ;
KREUTZBERG, GW .
NEUROPATHOLOGY AND APPLIED NEUROBIOLOGY, 1991, 17 (03) :223-230
[7]   CYTOTOXICITY OF MICROGLIA [J].
BANATI, RB ;
GEHRMANN, J ;
SCHUBERT, P ;
KREUTZBERG, GW .
GLIA, 1993, 7 (01) :111-118
[8]   EARLY AND RAPID DE-NOVO SYNTHESIS OF ALZHEIMER BETA-A4-AMYLOID PRECURSOR PROTEIN (APP) IN ACTIVATED MICROGLIA [J].
BANATI, RB ;
GEHRMANN, J ;
CZECH, C ;
MONNING, U ;
JONES, LL ;
KONIG, G ;
BEYREUTHER, K ;
KREUTZBERG, GW .
GLIA, 1993, 9 (03) :199-210
[9]  
BANATI RB, 1995, IN PRESS J CEREB BLO
[10]   TRANSFORMING GROWTH FACTOR-BETA IN THE CONTROL OF EPIDERMAL PROLIFERATION [J].
BARNARD, JA ;
BASCOM, CC ;
LYONS, RM ;
SIPES, NJ ;
MOSES, HL .
AMERICAN JOURNAL OF THE MEDICAL SCIENCES, 1988, 296 (03) :159-163