FOURIER-TRANSFORM INFRARED-ANALYSIS OF BACTERIORHODOPSIN SECONDARY STRUCTURE

被引:48
作者
CLADERA, J [1 ]
SABES, M [1 ]
PADROS, E [1 ]
机构
[1] UNIV AUTONOMA BARCELONA, FAC MED, DEPT BIOQUIM & BIOL MOLEC, UNITAT BIOFIS, E-08193 BARCELONA, SPAIN
关键词
D O I
10.1021/bi00164a010
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Fourier transform infrared spectroscopy at a resolution of 1 cm-1 has been used to study the conformation of dark-adapted bacteriorhodopsin in the native purple membrane, in H2O and D2O suspensions. A detailed analysis of the amide I bands was made using derivative and deconvolution techniques. Curve-fitting results of four independent experiments indicate, after estimation of the methodological errors, that native bacteriorhodopsin contains 52-73% alpha-helices, 13-19% reverse turns, 11-16% beta-sheets, and 3-7% unordered segments. Our analysis has enabled the identification of several components corresponding to alpha-helices, beta-sheets, and reverse turns. Besides the alpha(I)- and alpha(II)-helices (peaking at 1658 and 1665 cm-1), we propose that two more infrared bands arise from alpha-helical structures: one at 1650 cm-1 from alpha(I) and another one at 1642 cm-1 in H2O suspension, which could originate from type III beta-turns (i.e., one turn of 3(10)-helix). The relatively high content of reverse turns suggests the presence of one reverse turn per loop, plus another one in the C-terminal segment. On the other hand, several reasons argue that the calculated mean beta-sheet content of around 14% should be decreased somewhat. These beta-sheets could be located in the noncytoplasmatic links of the bacteriorhodopsin molecule.
引用
收藏
页码:12363 / 12368
页数:6
相关论文
共 45 条
[1]   VIBRATIONAL SPECTROSCOPY OF BACTERIORHODOPSIN MUTANTS - LIGHT-DRIVEN PROTON TRANSPORT INVOLVES PROTONATION CHANGES OF ASPARTIC-ACID RESIDUE-85, RESIDUE-96, AND RESIDUE-212 [J].
BRAIMAN, MS ;
MOGI, T ;
MARTI, T ;
STERN, LJ ;
KHORANA, HG ;
ROTHSCHILD, KJ .
BIOCHEMISTRY, 1988, 27 (23) :8516-8520
[2]   EXAMINATION OF THE SECONDARY STRUCTURE OF PROTEINS BY DECONVOLVED FTIR SPECTRA [J].
BYLER, DM ;
SUSI, H .
BIOPOLYMERS, 1986, 25 (03) :469-487
[3]  
CABIAUX V, 1989, J BIOL CHEM, V264, P4928
[4]  
CAMERON DG, 1984, J TEST EVAL, V12, P78, DOI 10.1520/JTE10701J
[5]   STRUCTURAL AND CONFORMATIONAL-CHANGES OF BETA-LACTOGLOBULIN-B - AN INFRARED SPECTROSCOPIC STUDY OF THE EFFECT OF PH AND TEMPERATURE [J].
CASAL, HL ;
KOHLER, U ;
MANTSCH, HH .
BIOCHIMICA ET BIOPHYSICA ACTA, 1988, 957 (01) :11-20
[6]   ESTIMATION OF AMINO-ACID RESIDUE SIDE-CHAIN ABSORPTION IN INFRARED-SPECTRA OF PROTEIN SOLUTIONS IN HEAVY-WATER [J].
CHIRGADZE, YN ;
FEDOROV, OV ;
TRUSHINA, NP .
BIOPOLYMERS, 1975, 14 (04) :679-694
[8]   PROTEIN SECONDARY STRUCTURES IN WATER FROM 2ND-DERIVATIVE AMIDE-I INFRARED-SPECTRA [J].
DONG, A ;
HUANG, P ;
CAUGHEY, WS .
BIOCHEMISTRY, 1990, 29 (13) :3303-3308
[9]   DETERMINATION OF THE SECONDARY STRUCTURE-CONTENT OF PROTEINS IN AQUEOUS-SOLUTIONS FROM THEIR AMIDE-I AND AMIDE-II INFRARED BANDS - COMPARISON BETWEEN CLASSICAL AND PARTIAL LEAST-SQUARES METHODS [J].
DOUSSEAU, F ;
PEZOLET, M .
BIOCHEMISTRY, 1990, 29 (37) :8771-8779
[10]  
DOWNER NW, 1986, J BIOL CHEM, V261, P3640