ERGODIC AND RATIO LIMIT THEOREMS FOR ALPHA-RECURRENT SEMI-MARKOV PROCESSES

被引:7
作者
CHEONG, CK
机构
[1] Mathematics Department, University of Malaya, Kuala Lumpur
来源
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE | 1968年 / 9卷 / 04期
关键词
D O I
10.1007/BF00531751
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper applies renewal theoretic arguments and an elementary lemma on the transforms of convolutions to prove solidarity and limit theorems for semi-Markov processes. © 1968 Springer-Verlag.
引用
收藏
页码:270 / &
相关论文
共 10 条
[1]   GEOMETRIC CONVERGENCE OF SEMI-MARKOV TRANSITION PROBABILITIES [J].
CHEONG, CK .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1967, 7 (02) :122-&
[2]  
FELLER W, 1966, INTRODUCTION PROBABI
[3]  
Kingman J.F.C., 1963, P LOND MATH SOC, Vs3-13, P593, DOI [10.1112/plms/s3-13.1.593, DOI 10.1112/PLMS/S3-13.1.593]
[4]   MARKOV RENEWAL PROCESSES - DEFINITIONS AND PRELIMINARY PROPERTIES [J].
PYKE, R .
ANNALS OF MATHEMATICAL STATISTICS, 1961, 32 :1231-&
[5]   MARKOV RENEWAL PROCESSES WITH FINITELY MANY STATES [J].
PYKE, R .
ANNALS OF MATHEMATICAL STATISTICS, 1961, 32 :1243-&
[6]  
Pyke R., 1964, ANN MATH STAT, V35, P1746
[7]   REGENERATIVE STOCHASTIC PROCESSES [J].
SMITH, WL .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1955, 232 (1188) :6-31
[8]  
TEUGELS JF, 1967, 107 PURD U DEP STAT
[9]   GEOMETRIC ERGODICITY IN DENUMERABLE MARKOV CHAINS [J].
VEREJONES, D .
QUARTERLY JOURNAL OF MATHEMATICS, 1962, 13 (49) :7-&
[10]  
Widder DV, 1946, PRINCETON MATH SERIE, V6, P42