MORE ON THE Q-OSCILLATOR ALGEBRA AND Q-ORTHOGONAL POLYNOMIALS

被引:63
作者
FLOREANINI, R [1 ]
LETOURNEUX, J [1 ]
VINET, L [1 ]
机构
[1] UNIV MONTREAL,CTR RECH MATH,MONTREAL,PQ H3C 3J7,CANADA
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1995年 / 28卷 / 10期
关键词
D O I
10.1088/0305-4470/28/10/002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Properties of certain q-orthogonal polynomials are connected to the q-oscillator algebra. The Wall and q-laguerre polynomials are shown to arise as matrix elements of q-exponentials of the generators in a representation of this algebra. A realization is presented where the continuous q-Hermite polynomials form a basis of the representation space. Various identities are interpreted within this model. In particular, the connection formula between the continuous big q-Hermite and the continuous q-Hermite polynomials is thus obtained, and two generating functions for these last polynomials are derived algebraically.
引用
收藏
页码:L287 / L293
页数:7
相关论文
共 22 条
[1]   DIFFERENCE ANALOGS OF THE HARMONIC-OSCILLATOR [J].
ATAKISHIEV, NM ;
SUSLOV, SK .
THEORETICAL AND MATHEMATICAL PHYSICS, 1990, 85 (01) :1055-1062
[2]   A REALIZATION OF THE Q-HARMONIC OSCILLATOR [J].
ATAKISHIEV, NM ;
SUSLOV, SK .
THEORETICAL AND MATHEMATICAL PHYSICS, 1991, 87 (01) :442-444
[3]  
ATAKISHIYEV N, 1994, THEOR MATH PHYS, V98
[4]   THE QUANTUM GROUP SUQ(2) AND A Q-ANALOGUE OF THE BOSON OPERATORS [J].
BIEDENHARN, LC .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (18) :L873-L878
[5]   QUANTUM ALGEBRAS AND Q-SPECIAL FUNCTIONS [J].
FLOREANINI, R ;
VINET, L .
ANNALS OF PHYSICS, 1993, 221 (01) :53-70
[6]   AUTOMORPHISMS OF THE Q-OSCILLATOR ALGEBRA AND BASIC ORTHOGONAL POLYNOMIALS [J].
FLOREANINI, R ;
VINET, L .
PHYSICS LETTERS A, 1993, 180 (06) :393-401
[7]   Q-ORTHOGONAL POLYNOMIALS AND THE OSCILLATOR QUANTUM GROUP [J].
FLOREANINI, R ;
VINET, L .
LETTERS IN MATHEMATICAL PHYSICS, 1991, 22 (01) :45-54
[8]  
FLOREANINI R, 1995, CRM2246 U MONTR PREP
[9]  
Floreanini R., 1994, CONT MATH, V160, P85
[10]  
FLOREANINI R, 1995, CRM2233 U MONTR