USE OF A POTENTIAL OF MEAN FORCE TO ANALYZE FREE-ENERGY CONTRIBUTIONS IN PROTEIN FOLDING

被引:24
作者
AVBELJ, F [1 ]
机构
[1] INST CHEM, YU-61001 LJUBLJANA, SLOVENIA
关键词
D O I
10.1021/bi00142a018
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A method for calculation of the free energy of residues as a function of residue burial is proposed. The method is based on the potential of mean force, with a reaction coordinate expressed by residue burial. Residue burials are calculated from high-resolution protein structures. The largest individual contributions to the free energy of a residue are found to be due to the hydrophobic interactions of the nonpolar atoms, interactions of the main chain polar atoms, and interactions of the charged groups of residues Arg and Lys. The contribution to the free energy of folding due to the uncharged side chain polar atoms is small. The contribution to the free energy of folding due to the main chain polar atoms is favorable for partially buried residues and less favorable or unfavorable for fully buried residues. Comparison of the accessible surface areas of proteins and model spheres shows that proteins deviate considerably from a spherical shape and that the deviations increase with the size of a protein. The implications of these results for protein folding are also discussed.
引用
收藏
页码:6290 / 6297
页数:8
相关论文
共 54 条
[1]   PH-INDUCED DENATURATION OF PROTEINS - A SINGLE SALT BRIDGE CONTRIBUTES 3-5 KCAL MOL TO THE FREE-ENERGY OF FOLDING OF T4-LYSOZYME [J].
ANDERSON, DE ;
BECKTEL, WJ ;
DAHLQUIST, FW .
BIOCHEMISTRY, 1990, 29 (09) :2403-2408
[2]  
[Anonymous], 1968, SPECTRAL ANAL ITS AP
[3]   CHARACTERIZATION OF A PARTLY FOLDED PROTEIN BY NMR METHODS - STUDIES ON THE MOLTEN GLOBULE STATE OF GUINEA-PIG ALPHA-LACTALBUMIN [J].
BAUM, J ;
DOBSON, CM ;
EVANS, PA ;
HANLEY, C .
BIOCHEMISTRY, 1989, 28 (01) :7-13
[4]   THE ROLE OF HYDROGEN-BONDS IN PROTEIN FOLDING AND PROTEIN ASSOCIATION [J].
BENNAIM, A .
JOURNAL OF PHYSICAL CHEMISTRY, 1991, 95 (03) :1437-1444
[5]   SOLVENT EFFECTS ON PROTEIN ASSOCIATION AND PROTEIN FOLDING [J].
BENNAIM, A .
BIOPOLYMERS, 1990, 29 (03) :567-596
[6]  
Brooks III C. L., 1988, PROTEINS THEORETICAL
[7]   DETECTION AND CHARACTERIZATION OF A FOLDING INTERMEDIATE IN BARNASE BY NMR [J].
BYCROFT, M ;
MATOUSCHEK, A ;
KELLIS, JT ;
SERRANO, L ;
FERSHT, AR .
NATURE, 1990, 346 (6283) :488-490
[8]   PRINCIPLES OF PROTEIN-PROTEIN RECOGNITION [J].
CHOTHIA, C ;
JANIN, J .
NATURE, 1975, 256 (5520) :705-708
[9]   STRUCTURAL INVARIANTS IN PROTEIN FOLDING [J].
CHOTHIA, C .
NATURE, 1975, 254 (5498) :304-308
[10]   HYDROPHOBIC BONDING AND ACCESSIBLE SURFACE-AREA IN PROTEINS [J].
CHOTHIA, C .
NATURE, 1974, 248 (5446) :338-339