ESCHERICHIA-COLI-SIGMA-70 AND NUSA PROTEINS .1. BINDING INTERACTIONS WITH CORE RNA-POLYMERASE IN SOLUTION AND WITHIN THE TRANSCRIPTION COMPLEX

被引:112
作者
GILL, SC
WEITZEL, SE
VONHIPPEL, PH
机构
[1] UNIV OREGON,INST MOLEC BIOL,EUGENE,OR 97403
[2] UNIV OREGON,DEPT CHEM,EUGENE,OR 97403
关键词
RNA POLYMERASE; SIGMA-FACTOR; NUSA PROTEIN; TRANSCRIPTION; ELONGATION COMPLEX; INITIATION COMPLEX;
D O I
10.1016/0022-2836(91)90015-X
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This paper describes the binding interactions of Escherichia coli transcription factors σ70 and NusA with core RNA polymerase, both free in solution and as a part of the functional transcription complex. High pressure liquid chromatography gel filtration and fluorescence techniques have been used to monitor the binding of these factors to core polymerase in solution at salt concentrations roughly comparable to the in vivo environment (250 mm-KCL. 50 mm-potassium phosphate (pH 7.5)); under these conditions all the interacting species exist separately as protein monomers. We find that σ70 and NusA bind competitively to core polymerase with a 1:1 binding stoichiometry in this milieu, and that NusA does not bind to the polymerase holoenzyme. Association constants of approximately 2 × 109 and 1 × 107 m-1 have been measured for the σ70-core polymerase interaction and for the NusA-core polymerase interaction, respectively. These findings are consistent with the original formulation of the NusA-σ70 cycle put forward by Greenblatt & Li, and provide the basis for a further (and preliminary) quantitative examination of these same interactions within the transcription complex. We use a number of molecular biological techniques, together with data from the literature, to estimate these binding constants in various phases of the transcription cycle. In keeping with our results in solution, we find that the effective binding affinity of σ70 for core polymerase within the "open" promoter-polymerase complex is at least 500-fold greater than that of NusA. As the transcription complex moves from the initiation to the elongation phase these relative binding affinities are reversed; the average association constant of NusA for the core polymerase in the elongation complex remains practically the same as in free solution (approx. 3 × 107 m1), while the affinity of σ70 for core polymerase in this complex drops to less than 5 × 105m1. These results are used to begin to define the basic conformational states and interaction potentials of core polymerase in the various stages of the transcription cycle. © 1991.
引用
收藏
页码:307 / 324
页数:18
相关论文
共 49 条
[1]  
[Anonymous], 1969, DATA REDUCTION ERROR
[2]   RNA CHAIN ELONGATION BY ESCHERICHIA-COLI RNA-POLYMERASE - FACTORS AFFECTING THE STABILITY OF ELONGATING TERNARY COMPLEXES [J].
ARNDT, KM ;
CHAMBERLIN, MJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 213 (01) :79-108
[3]   TRANSCRIPTION TERMINATION IN ESCHERICHIA-COLI - MEASUREMENT OF THE RATE OF ENZYME-RELEASE FROM RHO-INDEPENDENT TERMINATORS [J].
ARNDT, KM ;
CHAMBERLIN, MJ .
JOURNAL OF MOLECULAR BIOLOGY, 1988, 202 (02) :271-285
[4]  
BETCHERLANGE SL, 1978, J BIOL CHEM, V253, P3757
[5]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[6]   FACTOR STIMULATING TRANSCRIPTION BY RNA POLYMERASE [J].
BURGESS, RR ;
TRAVERS, AA ;
DUNN, JJ ;
BAUTZ, EKF .
NATURE, 1969, 221 (5175) :43-&
[7]   PROCEDURE FOR RAPID, LARGE-SCALE PURIFICATION OF ESCHERICHIA-COLI DNA-DEPENDENT RNA-POLYMERASE INVOLVING POLYMIN-P PRECIPITATION AND DNA-CELLULOSE CHROMATOGRAPHY [J].
BURGESS, RR ;
JENDRISAK, JJ .
BIOCHEMISTRY, 1975, 14 (21) :4634-4638
[8]  
Burgess RR, 1976, RNA POLYMERASE, P69
[9]   THE NUCLEOTIDE-SEQUENCE OF THE CLONED RPOD GENE FOR THE RNA-POLYMERASE SIGMA SUBUNIT FROM ESCHERICHIA-COLI-K12 [J].
BURTON, Z ;
BURGESS, RR ;
LIN, J ;
MOORE, D ;
HOLDER, S ;
GROSS, CA .
NUCLEIC ACIDS RESEARCH, 1981, 9 (12) :2889-2903
[10]  
CHAMBERLIN M, 1983, METHOD ENZYMOL, V101, P540