STABILITY OF INCOHERENCE IN A POPULATION OF COUPLED OSCILLATORS

被引:442
作者
STROGATZ, SH [1 ]
MIROLLO, RE [1 ]
机构
[1] BOSTON COLL,DEPT MATH,CHESTNUT HILL,MA 02167
关键词
NONLINEAR OSCILLATOR; SYNCHRONIZATION; PHASE TRANSITION; MEAN-FIELD MODEL; BIFURCATION; COLLECTIVE PHENOMENA; PHASE LOCKING;
D O I
10.1007/BF01029202
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze a mean-field model of coupled oscillators with randomly distributed frequencies. This system is known to exhibit a transition to collective oscillations: for small coupling, the system is incoherent, with all the oscillators running at their natural frequencies, but when the coupling exceeds a certain threshold, the system spontaneously synchronizes. We obtain the first rigorous stability results for this model by linearizing the Fokker-Planck equation about the incoherent state. An unexpected result is that the system has pathological stability properties: the incoherent state is unstable above threshold, but neutrally stable below threshold. We also show that the system is singular in the sense that its stability properties are radically altered by infinitesimal noise.
引用
收藏
页码:613 / 635
页数:23
相关论文
共 21 条
[1]   SYNCHRONOUS RHYTHMIC FLASHING OF FIREFLIES .2. [J].
BUCK, J .
QUARTERLY REVIEW OF BIOLOGY, 1988, 63 (03) :265-289
[2]   INTRINSIC FLUCTUATION AND ITS CRITICAL SCALING IN A CLASS OF POPULATIONS OF OSCILLATORS WITH DISTRIBUTED FREQUENCIES [J].
DAIDO, H .
PROGRESS OF THEORETICAL PHYSICS, 1989, 81 (04) :727-731
[3]   SCALING BEHAVIOR AT THE ONSET OF MUTUAL ENTRAINMENT IN A POPULATION OF INTERACTING OSCILLATORS [J].
DAIDO, H .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (10) :L629-L636
[4]   INTRINSIC FLUCTUATIONS AND A PHASE-TRANSITION IN A CLASS OF LARGE POPULATIONS OF INTERACTING OSCILLATORS [J].
DAIDO, H .
JOURNAL OF STATISTICAL PHYSICS, 1990, 60 (5-6) :753-800
[5]   IRREVERSIBILITY AND NONRECURRENCE [J].
KELLER, JB ;
BONILLA, LL .
JOURNAL OF STATISTICAL PHYSICS, 1986, 42 (5-6) :1115-1125
[6]   STATISTICAL MACRODYNAMICS OF LARGE DYNAMICAL-SYSTEMS - CASE OF A PHASE-TRANSITION IN OSCILLATOR COMMUNITIES [J].
KURAMOTO, Y ;
NISHIKAWA, I .
JOURNAL OF STATISTICAL PHYSICS, 1987, 49 (3-4) :569-605
[7]  
Kuramoto Y., 1989, COOPERATIVE DYNAMICS
[8]  
Kuramoto Y., 1984, CHEM OSCILLATIONS WA, P68
[9]  
KURAMOTO Y, 1975, LECTURE NOTES PHYSIC, V39
[10]   POINCARE CYCLES, ERGODICITY, AND IRREVERSIBILITY IN ASSEMBLIES OF COUPLED HARMONIC OSCILLATORS [J].
MAZUR, P ;
MONTROLL, E .
JOURNAL OF MATHEMATICAL PHYSICS, 1960, 1 (01) :70-84