OPTIMAL STOPPING, EXPONENTIAL UTILITY, AND LINEAR-PROGRAMMING

被引:36
作者
DENARDO, EV
ROTHBLUM, UG
机构
[1] Yale University, New Haven, CT
关键词
Exponential Utility; Linear Programming; Markov Decision Chains; Optimal Stopping;
D O I
10.1007/BF01582110
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper uses linear programming to compute an optimal policy for a stopping problem whose utility function is exponential. This is done by transforming the problem into an equivalent one having additive utility and nonnegative (not necessarily substochastic) transition matrices. © 1979 The Mathematical Programming Society.
引用
收藏
页码:228 / 244
页数:17
相关论文
共 13 条
[1]  
dEpenoux F, 1960, REV FRANCAISE RECHER, V14, P3
[2]  
EAVES BC, UNPUBLISHED
[3]  
Gantmacher F. R., 1971, THEORY MATRICES
[4]  
HOWARD RA, 1972, MANAGE SCI, V8, P356
[6]  
JAQUETTE SC, 1975, 275 CORN U DEP OP RE
[7]  
Kemeny J. G., 1975, FINITE MARKOV CHAINS
[8]  
Oldenburger R., 1940, DUKE MATH J, V6, P357, DOI [10.1215/S0012-7094-40-00627-5, DOI 10.1215/S0012-7094-40-00627-5]
[9]   ADDITIVE VON NEUMANN-MORGENSTERN UTILITY FUNCTIONS [J].
POLLAK, RA .
ECONOMETRICA, 1967, 35 (3-4) :485-&
[10]   RISK-AVERSION IN THE SMALL AND IN THE LARGE [J].
PRATT, JW .
ECONOMETRICA, 1964, 32 (1-2) :122-136