ADOPTIVE TRANSFER OF DIABETES INTO IMMUNODEFICIENT NOD-SCID SCID MICE - RELATIVE CONTRIBUTIONS OF CD4+ AND CD8+ T-CELLS FROM DIABETIC VERSUS PREDIABETIC NOD.NON-THY-1A DONORS

被引:415
作者
CHRISTIANSON, SW [1 ]
SHULTZ, LD [1 ]
LEITER, EH [1 ]
机构
[1] JACKSON LAB,BAR HARBOR,ME 04609
关键词
D O I
10.2337/diabetes.42.1.44
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Precise definition of the role of both CD4 and CD8 T-cell subsets from NOD mice in the adoptive transfer of diabetes has been complicated by the possibility that endogenous T-cells may be recruited. Two newly created NOD congenic stocks, NOD.NON-Thy-1a and NOD/LtSz-scid, have been used as T-cell donors and recipients, respectively, to eliminate contributions from endogenous T-cells and thus to define the requirement for transferred T-cell subsets as a function of underlying diabetes development in the NOD donor. Total T-cells and T-cell subsets prepared from either prediabetic or diabetic NOD.NON-Thy-la donors were adoptively transferred into 6-wk-old NOD-scid/scid recipients that were monitored for diabetes development. Both flow cytometric and histological analysis of recipient spleen and pancreas after adoptive transfer showed lymphocytes of donor (Thy1.1+) origin exclusively. Total T-cell and enriched CD4+ T-cell preparations from both diabetic and young prediabetic donors transferred diabetes to NOD-scid/scid recipients. However, the mean time to diabetes onset was doubled when CD4+ lymphocytes were isolated from prediabetic versus diabetic donors, and these transfers were complicated by the generation of small but significant numbers of CD8+ cells over time. Enriched CD8+ populations alone were unable to transfer disease. More rigorous exclusion of CD8+ cells by means of anti-CD8 MoAb treatment in vivo of the recipients of enriched CD4+ cells demonstrated a significant difference in the diabetogenic potency of CD4+ lymphocytes from diabetic versus nondiabetic donors. Diabetes was adoptively transferred to 58% of the recipients of enriched CD4+ lymphocytes from diabetic donors. In contrast, none of the recipients of enriched CD4+ lymphocytes from young prediabetic donors developed diabetes after MoAb treatment in vivo. The ability of a T-cell population to produce severe insulitis and sialitis in NOD-scid/scid recipients of T-cells closely paralleled its ability to induce diabetes. In an effort to suppress insulitis by suppression of macrophage migration to the islets, NOD-scid/scid mice were with silica in conjunction with adoptive transfer of T-cells from diabetic donors. Chronic silica treatment failed to deplete tissue macrophages and did not prevent diabetes development after transfer of unfractionated T-cells. Evidence is discussed indicating that the age-associated differences in ability of CD4+ T-cells to adoptively transfer diabetes in the absence of the CD8+ T-cells subset is a function of prior, chronic exposure of the CD4+ lymphocytes to beta-cell antigens in the donor. This study confirms that both CD4+ and CD8+ T-cells are required to initiate beta-cell destruction in NOD mice.
引用
收藏
页码:44 / 55
页数:12
相关论文
共 39 条
[1]   SYNGENEIC T-CELL TRANSFER OF DIABETES INTO NOD NEWBORN MICE - INSITU STUDIES OF THE AUTOIMMUNE STEPS LEADING TO INSULIN-PRODUCING CELL DESTRUCTION [J].
BEDOSSA, P ;
BENDELAC, A ;
BACH, JF ;
CARNAUD, C .
EUROPEAN JOURNAL OF IMMUNOLOGY, 1989, 19 (10) :1947-1951
[2]  
BENDELAC A, 1988, J IMMUNOL, V141, P2625
[3]   SYNGENEIC TRANSFER OF AUTOIMMUNE DIABETES FROM DIABETIC NOD MICE TO HEALTHY NEONATES - REQUIREMENT FOR BOTH L3T4+ AND LYT-2+ T-CELLS [J].
BENDELAC, A ;
CARNAUD, C ;
BOITARD, C ;
BACH, JF .
JOURNAL OF EXPERIMENTAL MEDICINE, 1987, 166 (04) :823-832
[4]   ADMINISTRATION OF SILICA PARTICLES OR ANTI-LYT2 ANTIBODY PREVENTS BETA-CELL DESTRUCTION IN NOD MICE GIVEN CYCLOPHOSPHAMIDE [J].
CHARLTON, B ;
BACELJ, A ;
MANDEL, TE .
DIABETES, 1988, 37 (07) :930-935
[5]   THERAPY WITH MONOCLONAL-ANTIBODIES BY ELIMINATION OF T-CELL SUBSETS INVIVO [J].
COBBOLD, SP ;
JAYASURIYA, A ;
NASH, A ;
PROSPERO, TD ;
WALDMANN, H .
NATURE, 1984, 312 (5994) :548-551
[6]  
CUSTER RP, 1985, AM J PATHOL, V120, P464
[7]   RAT-X-RAT HYBRID MYELOMAS AND A MONOCLONAL ANTI-FD PORTION OF MOUSE IGG [J].
GALFRE, G ;
MILSTEIN, C ;
WRIGHT, B .
NATURE, 1979, 277 (5692) :131-133
[8]   AN IMPROVED METHOD FOR ISOLATION OF MOUSE PANCREATIC-ISLETS [J].
GOTOH, M ;
MAKI, T ;
KIYOIZUMI, T ;
SATOMI, S ;
MONACO, AP .
TRANSPLANTATION, 1985, 40 (04) :437-438
[9]  
HARADA M, 1986, INSULITIS TYPE 1 DIA, P143
[10]   PANCREATIC ISLET-SPECIFIC T-CELL CLONES FROM NONOBESE DIABETIC MICE [J].
HASKINS, K ;
PORTAS, M ;
BERGMAN, B ;
LAFFERTY, K ;
BRADLEY, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (20) :8000-8004