BAYESIAN-ANALYSIS OF THRESHOLD AUTOREGRESSIONS

被引:9
作者
BROEMELING, LD
COOK, P
机构
[1] UNIV TEXAS,MED BRANCH,GALVESTON,TX 77550
[2] UNIV TULSA,TULSA,OK 74104
关键词
NONLINEAR TIME SERIES; POSTERIOR DISTRIBUTIONS; PREDICTIVE DISTRIBUTION; CREDIBLE REGIONS;
D O I
10.1080/03610929208830924
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A nonasymptotic Bayesian approach is developed for analysis of data from threshold autoregressive processes with two regimes. Using the conditional likelihood function, the marginal posterior distribution for each of the parameters is derived along with posterior means and variances. A test for linear functions of the autoregressive coefficients is presented. The approach presented uses a posterior p-value averaged over the values of the threshold. The one-step ahead predictive distribution is derived along with the predictive mean and variance. In addition, equivalent results axe derived conditional upon a value of the threshold. A numerical example is presented to illustrate the approach.
引用
收藏
页码:2459 / 2482
页数:24
相关论文
共 17 条
[1]  
Box GEP., 1973, BAYESIAN INFERENCE S
[2]  
Broemeling L. D., 1985, BAYESIAN ANAL LINEAR
[3]  
Broemeling L.D., 1987, ECONOMETRICS STRUCTU
[4]  
Chan K., 1986, J TIME SER ANAL, V7, P179, DOI DOI 10.1111/J.1467-9892.1986.TB00501.X
[5]   TESTING FOR THRESHOLD AUTOREGRESSION [J].
CHAN, KS .
ANNALS OF STATISTICS, 1990, 18 (04) :1886-1894
[6]  
FINKELSTEIN L, 1979, MATH MODELING DYNAMI
[7]   NON-LINEAR AUTOREGRESSIVE PROCESSES [J].
JONES, DA .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1978, 360 (1700) :71-95
[8]   A THRESHOLD AR(1) MODEL [J].
PETRUCCELLI, JD ;
WOOLFORD, SW .
JOURNAL OF APPLIED PROBABILITY, 1984, 21 (02) :270-286
[9]   A BAYESIAN-ANALYSIS OF SOME THRESHOLD SWITCHING MODELS [J].
POLE, AM ;
SMITH, AFM .
JOURNAL OF ECONOMETRICS, 1985, 29 (1-2) :97-119
[10]  
PRESS SJ, 1982, APPLIED MULTIVARIATE