A ROLE FOR CDC7 IN REPRESSION OF TRANSCRIPTION AT THE SILENT MATING-TYPE LOCUS HMR IN SACCHAROMYCES-CEREVISIAE

被引:75
作者
AXELROD, A [1 ]
RINE, J [1 ]
机构
[1] UNIV CALIF BERKELEY,DEPT MOLEC & CELLULAR BIOL,BERKELEY,CA 94720
关键词
D O I
10.1128/MCB.11.2.1080
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The mating-type genes at MAT in Saccharomyces cerevisiae are expressed, whereas the same genes located at HML and HMR are transcriptionally repressed. The DNA element responsible for repression at HMR has been termed a silencer and contains an autonomous replication sequence, a binding site for GRFI/RAPI, and a binding site for ABFI. A double-mutant HMR-E silencer that contains single nucleotide substitutions in both the GRFI/RAPI- and ABFI-binding sites no longer binds either factor in vitro, nor represses transcription at HMR in vivo. In MAT alpha cells, this depression of a information results in a nonmating phenotype. Second-site suppressor mutations were isolated that restored the alpha mating phenotype to MAT alpha cells containing the double-mutant silencer. One of these suppressors, designated sas1-1, conferred a temperature-sensitive lethal phenotype to the cell. SAS1 was found to be identical to CDC7, a gene which encodes a protein kinase required for the initiation of DNA replication. This new allele of CDC7 was designated cdc7-90. cdc7-90 restored the alpha mating phenotype by restoring silencing. The original allele of CDC7, isolated on the basis of the cell cycle phenotype it confers, also restored silencing, and overexpression of CDC7 interferred with silencing. cdc7-90 did not restore detectable binding of GRFI/RAPI or ABFI to the double-mutant silencer in vitro. These results indicate that a reduced level of CDC7 function restores silencing to a locus defective in binding two factors normally required for silencing.
引用
收藏
页码:1080 / 1091
页数:12
相关论文
共 58 条
[1]   REGULATION OF MATING-TYPE INFORMATION IN YEAST - NEGATIVE CONTROL REQUIRING SEQUENCES BOTH 5' AND 3' TO THE REGULATED REGION [J].
ABRAHAM, J ;
NASMYTH, KA ;
STRATHERN, JN ;
KLAR, AJS ;
HICKS, JB .
JOURNAL OF MOLECULAR BIOLOGY, 1984, 176 (03) :307-331
[2]  
Balazs I, 1974, Cold Spring Harb Symp Quant Biol, V38, P239
[3]   STRUCTURAL AND FUNCTIONAL CONSERVATION BETWEEN YEAST AND HUMAN 3-HYDROXY-3-METHYLGLUTARYL COENZYME-A REDUCTASES, THE RATE-LIMITING ENZYME OF STEROL BIOSYNTHESIS [J].
BASSON, ME ;
THORSNESS, M ;
FINERMOORE, J ;
STROUD, RM ;
RINE, J .
MOLECULAR AND CELLULAR BIOLOGY, 1988, 8 (09) :3797-3808
[4]   CHARACTERIZATION OF A SILENCER IN YEAST - A DNA-SEQUENCE WITH PROPERTIES OPPOSITE TO THOSE OF A TRANSCRIPTIONAL ENHANCER [J].
BRAND, AH ;
BREEDEN, L ;
ABRAHAM, J ;
STERNGLANZ, R ;
NASMYTH, K .
CELL, 1985, 41 (01) :41-48
[5]   A YEAST SILENCER CONTAINS SEQUENCES THAT CAN PROMOTE AUTONOMOUS PLASMID REPLICATION AND TRANSCRIPTIONAL ACTIVATION [J].
BRAND, AH ;
MICKLEM, G ;
NASMYTH, K .
CELL, 1987, 51 (05) :709-719
[6]   2 DNA-BINDING FACTORS RECOGNIZE SPECIFIC SEQUENCES AT SILENCERS, UPSTREAM ACTIVATING SEQUENCES, AUTONOMOUSLY REPLICATING SEQUENCES, AND TELOMERES IN SACCHAROMYCES-CEREVISIAE [J].
BUCHMAN, AR ;
KIMMERLY, WJ ;
RINE, J ;
KORNBERG, RD .
MOLECULAR AND CELLULAR BIOLOGY, 1988, 8 (01) :210-225
[7]   CONNECTIONS BETWEEN TRANSCRIPTIONAL ACTIVATORS, SILENCERS, AND TELOMERES AS REVEALED BY FUNCTIONAL-ANALYSIS OF A YEAST DNA-BINDING PROTEIN [J].
BUCHMAN, AR ;
LUE, NF ;
KORNBERG, RD .
MOLECULAR AND CELLULAR BIOLOGY, 1988, 8 (12) :5086-5099
[8]   CHANGES IN HISTONE GENE DOSAGE ALTER TRANSCRIPTION IN YEAST [J].
CLARKADAMS, CD ;
NORRIS, D ;
OSLEY, MA ;
FASSLER, JS ;
WINSTON, F .
GENES & DEVELOPMENT, 1988, 2 (02) :150-159
[9]   GENETIC CONTROL OF CELL DIVISION CYCLE IN YEAST .3. 7 GENES CONTROLLING NUCLEAR DIVISION [J].
CULOTTI, J ;
HARTWELL, LH .
EXPERIMENTAL CELL RESEARCH, 1971, 67 (02) :389-&
[10]   SIMILARITY BETWEEN THE TRANSCRIPTIONAL SILENCER BINDING PROTEIN-ABF1 AND PROTEIN-RAP1 [J].
DIFFLEY, JFX ;
STILLMAN, B .
SCIENCE, 1989, 246 (4933) :1034-1038