SEMIPARAMETRIC GENERALIZED LEAST-SQUARES IN THE MULTIVARIATE NONLINEAR-REGRESSION MODEL

被引:28
作者
DELGADO, MA
机构
关键词
D O I
10.1017/S0266466600012767
中图分类号
F [经济];
学科分类号
02 ;
摘要
Asymptotically efficient estimates for the multiple equations nonlinear regression model are obtained in the presence of heteroskedasticity of unknown form. The proposed estimator is a generalized least squares based on nonparametric nearest neighbor estimates of the conditional variance matrices. Some Monte Carlo experiments are reported.
引用
收藏
页码:203 / 222
页数:20
相关论文
共 18 条
[1]  
Amemiya T, 1986, ADV ECONOMETRICS
[2]  
Andrews D. W. K, 1990, ASYMPTOTICS SEMIPARA
[3]  
Bellman R., 1970, INTRO MATRIX ANAL
[4]  
CARROLL RJ, 1982, ANN STAT, V10, P1233
[5]   ASYMPTOTIC EFFICIENCY IN ESTIMATION WITH CONDITIONAL MOMENT RESTRICTIONS [J].
CHAMBERLAIN, G .
JOURNAL OF ECONOMETRICS, 1987, 34 (03) :305-334
[6]   ASYMPTOTIC NORMALITY AND CONSISTENCY OF LAEAST SQUARES ESTIMATORS FOR FAMILIES OF LINAR REGRESSIONS [J].
EICKER, F .
ANNALS OF MATHEMATICAL STATISTICS, 1963, 34 (02) :447-&
[7]  
Gallant A.R., 1975, J ECONOMETRICS, V3, P35, DOI [10.1016/0304-4076(75)90064-0, DOI 10.1016/0304-4076(75)90064-0]
[8]  
HARDLE W, 1990, APPLIED NONPARAMETRI
[9]   EFFICIENT INSTRUMENTAL VARIABLES ESTIMATION OF NONLINEAR MODELS [J].
NEWEY, WK .
ECONOMETRICA, 1990, 58 (04) :809-837
[10]  
PHILLIPS PCB, 1975, ECONOMETRICA, V44, P449