PROBABILITY-INEQUALITIES FOR EMPIRICAL PROCESSES AND A LAW OF THE ITERATED LOGARITHM

被引:146
作者
ALEXANDER, KS [1 ]
机构
[1] MATH SCI RES INST,BERKELEY,CA
关键词
D O I
10.1214/aop/1176993141
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:1041 / 1067
页数:27
相关论文
共 20 条
[1]  
ALEXANDER K, 1982, THESIS MIT
[2]  
BRONSHTEIN EM, 1976, SIBERIAN MATH J+, V17, P393
[3]  
CHUNG KL, 1949, T AM MATH SOC, V67, P36
[4]   BOUNDS FOR THE UNIFORM DEVIATION OF EMPIRICAL MEASURES [J].
DEVROYE, L .
JOURNAL OF MULTIVARIATE ANALYSIS, 1982, 12 (01) :72-79
[5]   CENTRAL LIMIT-THEOREMS FOR EMPIRICAL MEASURES [J].
DUDLEY, RM .
ANNALS OF PROBABILITY, 1978, 6 (06) :899-929
[6]   EMPIRICAL AND POISSON PROCESSES ON CLASSES OF SETS OR FUNCTIONS TOO LARGE FOR CENTRAL LIMIT-THEOREMS [J].
DUDLEY, RM .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1982, 61 (03) :355-368
[7]   INVARIANCE-PRINCIPLES FOR SUMS OF BANACH-SPACE VALUED RANDOM ELEMENTS AND EMPIRICAL PROCESSES [J].
DUDLEY, RM ;
PHILIPP, W .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1983, 62 (04) :509-552
[8]  
DUDLEY RM, 1983, UNPUB LECTURE NOTES
[9]   SOME LIMIT-THEOREMS FOR EMPIRICAL PROCESSES [J].
GINE, E ;
ZINN, J .
ANNALS OF PROBABILITY, 1984, 12 (04) :929-989