POLYELECTROLYTES NEAR THE ROD LIMIT

被引:871
作者
ODIJK, T [1 ]
机构
[1] STATE UNIV LEIDEN, DEPT PHYS CHEM 3, GORLAEUS LABS, LEIDEN, NETHERLANDS
关键词
ELECTROSTATICS - MATHEMATICAL TECHNIQUES - SOLUTIONS - Physical Chemistry;
D O I
10.1002/pol.1977.180150307
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The problem of a polyelectrolyte near the rod limit is formulated incorporating both the short-range stiffness of the backbone (the ″wormlike chain″ ) and the electrostatic interaction between segments taken as a Debye-Hueckel potential. By the use of a physically valid approximation an expression is derived for the mean-square extension length of a short polyelectrolyte chain. Some remarks are made on the relationship between the electrostatic interaction and the usual excluded-volume problem for polymer solutions.
引用
收藏
页码:477 / 483
页数:7
相关论文
共 13 条
[1]  
ABRAMOWITZ M, 1970, HDB MATHEMATICAL FUN, pCH5
[2]   SOME CONFORMATION PROBLEMS FOR LONG MACROMOLECULES [J].
DEGENNES, PG .
REPORTS ON PROGRESS IN PHYSICS, 1969, 32 (02) :187-&
[3]  
Feynman R.P., 1965, QUANTUM MECH PATH IN
[4]  
Freed K. F., 1972, ADV CHEM PHYS, V22, P1, DOI [DOI 10.1002/9780470143728, 10.1002/9780470143728]
[5]  
HARRIS FE, 1954, J POLYM SCI POL LETT, V15, P151
[6]   THE ELECTROSTATIC FREE ENERGY OF POLYELECTROLYTE SOLUTIONS .1. RANDOMLY KINKED MACROMOLECULES [J].
KATCHALSKY, A ;
LIFSON, S ;
MAZUR, J .
JOURNAL OF POLYMER SCIENCE, 1953, 11 (05) :409-423
[7]  
LANDAU LD, 1974, STATISTICAL PHYSICS
[9]  
Nagasawa M., 1972, LIGHT SCATTERING POL
[10]   MEAN-SQUARE RADIUS OF A POLYELECTROLYTE IMMERSED IN A 1-1 ELECTROLYTE [J].
RICHMOND, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1973, 6 (08) :L109-L111