STRONG LAWS FOR DEPENDENT HETEROGENEOUS PROCESSES

被引:48
作者
HANSEN, BE
机构
关键词
D O I
10.1017/S0266466600004412
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper presents maximal inequalities and strong law of large numbers for weakly dependent heterogeneous random variables. Specifically considered are L r mixingales for r > 1, strong mixing sequences, and near epoch dependent (NED) sequences. We provide the first strong law for L r-bounded L r mixingales and NED sequences for 1 > r > 2. The strong laws presented for α-mixing sequences are less restrictive than the laws of McLeish [8]. © 1991, Cambridge University Press. All rights reserved.
引用
收藏
页码:213 / 221
页数:9
相关论文
共 11 条
[1]   LAWS OF LARGE NUMBERS FOR DEPENDENT NON-IDENTICALLY DISTRIBUTED RANDOM-VARIABLES [J].
ANDREWS, DWK .
ECONOMETRIC THEORY, 1988, 4 (03) :458-467
[2]   CONSISTENCY IN NONLINEAR ECONOMETRIC-MODELS - A GENERIC UNIFORM LAW OF LARGE NUMBERS [J].
ANDREWS, DWK .
ECONOMETRICA, 1987, 55 (06) :1465-1471
[3]  
Billingsley P, 1968, CONVERGENCE PROBABIL
[4]  
Granger C. W. J., 1980, Journal of Time Series Analysis, V1, P15, DOI 10.1111/j.1467-9892.1980.tb00297.x
[5]  
HALL P, 1980, MARTINGALE LIMIT THE
[6]  
Ibragimov I. A, 1962, THEOR PROBAB APPL, V7, P349, DOI [DOI 10.1137/1107036, 10.1137/1107036]
[7]  
MCLEISH DL, 1975, ANN PROBAB, V5, P829
[8]  
PHILLIPS PCB, 1989, 932 COWL F DISC PAP
[9]   A UNIFORM LAW OF LARGE NUMBERS FOR DEPENDENT AND HETEROGENEOUS DATA PROCESSES [J].
POTSCHER, BM ;
PRUCHA, IR .
ECONOMETRICA, 1989, 57 (03) :675-683
[10]   THE FRACTIONAL UNIT-ROOT DISTRIBUTION [J].
SOWELL, F .
ECONOMETRICA, 1990, 58 (02) :495-505