A MAMMALIAN-CELL CYCLE CHECKPOINT PATHWAY UTILIZING P53 AND GADD45 IS DEFECTIVE IN ATAXIA-TELANGIECTASIA

被引:3121
作者
KASTAN, MB
ZHAN, QM
ELDEIRY, WS
CARRIER, F
JACKS, T
WALSH, WV
PLUNKETT, BS
VOGELSTEIN, B
FORNACE, AJ
机构
[1] NCI,MOLEC PHARMACOL LAB,BETHESDA,MD 20892
[2] MIT,CTR CANC RES,CAMBRIDGE,MA 02139
关键词
D O I
10.1016/0092-8674(92)90593-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cell cycle checkpoints can enhance cell survival and limit mutagenic events following DNA damage. Primary murine fibroblasts became deficient in a G1 checkpoint activated by ionizing radiation (IR) when both wild-type p53 alleles were disrupted. In addition, cells from patients with the radiosensitive, cancer-prone disease ataxia-telangiectasia (AT) lacked the IR-induced increase in p53 protein levels seen in normal cells. Finally, IR induction of the human GADD45 gene, an induction that is also defective in AT cells, was dependent on wild-type p53 function. Wild-type but not mutant p53 bound strongly to a conserved element in the GADD45 gene, and a p53-containing nuclear factor, which bound this element, was detected in extracts from irradiated cells. Thus, we identified three participants (AT gene(s), p53, and GADD45) in a signal transduction pathway that controls cell cycle arrest following DNA damage; abnormalities in this pathway probably contribute to tumor development.
引用
收藏
页码:587 / 597
页数:11
相关论文
共 56 条
[1]   WILD-TYPE BUT NOT MUTANT P53 IMMUNOPURIFIED PROTEINS BIND TO SEQUENCES ADJACENT TO THE SV40 ORIGIN OF REPLICATION [J].
BARGONETTI, J ;
FRIEDMAN, PN ;
KERN, SE ;
VOGELSTEIN, B ;
PRIVES, C .
CELL, 1991, 65 (06) :1083-1091
[2]   A VARIATION IN THE STRUCTURE OF THE PROTEIN-CODING REGION OF THE HUMAN-P53 GENE [J].
BUCHMAN, VL ;
CHUMAKOV, PM ;
NINKINA, NN ;
SAMARINA, OP ;
GEORGIEV, GP .
GENE, 1988, 70 (02) :245-252
[3]   DIOXIN-DEPENDENT ACTIVATION OF MURINE CYP1A-1 GENE-TRANSCRIPTION REQUIRES PROTEIN KINASE-C-DEPENDENT PHOSPHORYLATION [J].
CARRIER, F ;
OWENS, RA ;
NEBERT, DW ;
PUGA, A .
MOLECULAR AND CELLULAR BIOLOGY, 1992, 12 (04) :1856-1863
[4]  
CHOMCZYNSKI P, 1987, ANAL BIOCHEM, V162, P156, DOI 10.1016/0003-2697(87)90021-2
[5]   DEGRADATION OF P53 CAN BE TARGETED BY HPV E6 SEQUENCES DISTINCT FROM THOSE REQUIRED FOR P53 BINDING AND TRANSACTIVATION [J].
CROOK, T ;
TIDY, JA ;
VOUSDEN, KH .
CELL, 1991, 67 (03) :547-556
[6]   ACCURATE TRANSCRIPTION INITIATION BY RNA POLYMERASE-II IN A SOLUBLE EXTRACT FROM ISOLATED MAMMALIAN NUCLEI [J].
DIGNAM, JD ;
LEBOVITZ, RM ;
ROEDER, RG .
NUCLEIC ACIDS RESEARCH, 1983, 11 (05) :1475-1489
[7]  
DOLL R, 1981, J NATL CANCER I, V66, P1192
[8]   MICE DEFICIENT FOR P53 ARE DEVELOPMENTALLY NORMAL BUT SUSCEPTIBLE TO SPONTANEOUS TUMORS [J].
DONEHOWER, LA ;
HARVEY, M ;
SLAGLE, BL ;
MCARTHUR, MJ ;
MONTGOMERY, CA ;
BUTEL, JS ;
BRADLEY, A .
NATURE, 1992, 356 (6366) :215-221
[9]   DEFINITION OF A CONSENSUS BINDING-SITE FOR P53 [J].
ELDEIRY, WS ;
KERN, SE ;
PIETENPOL, JA ;
KINZLER, KW ;
VOGELSTEIN, B .
NATURE GENETICS, 1992, 1 (01) :45-49
[10]   WILD-TYPE P53 ACTIVATES TRANSCRIPTION INVITRO [J].
FARMER, G ;
BARGONETTI, J ;
ZHU, H ;
FRIEDMAN, P ;
PRYWES, R ;
PRIVES, C .
NATURE, 1992, 358 (6381) :83-86