ON THE EIGENSTRUCTURE OF TOEPLITZ MATRICES

被引:23
作者
CYBENKO, G
机构
[1] Tufts Univ, Dep of Mathematics,, Medford, MA, USA, Tufts Univ, Dep of Mathematics, Medford, MA, USA
来源
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING | 1984年 / 32卷 / 04期
关键词
D O I
10.1109/TASSP.1984.1164375
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In spite of the fact that Toeplitz eigenvalue problems have important applications in signal processing, relatively little is known about the eigenstructure of finite real symmetric Toeplitz matrices. In this paper, we exhibit two facts about the Toeplitz eigenstructure problem. We show that any reciprocal or anti-reciprocal n vector is an eigenvector for at least an left bracket (n plus 1)/2 right bracket -dimensional linear space of real symmetric n multiplied by n Toeplitz matrices. The second result is the fact that every n multiplied by n Toeplitz matrix can be imbedded into an (n plus 1) multiplied by (n plus 1) Toeplitz matrix which has a repeated smallest eigenvalue.
引用
收藏
页码:918 / 921
页数:4
相关论文
共 7 条
[1]   EIGENVALUES AND EIGENVECTORS OF SYMMETRIC CENTROSYMMETRIC MATRICES [J].
CANTONI, A ;
BUTLER, P .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1976, 13 (03) :275-288
[2]  
Cybenko G., 1982, CIRCUITS SYSTEMS SIG, V1, P345
[3]  
DELSARTE P, 1983, 1983 P INT S MATH TH
[4]  
Grenander U., 1984, CALIFORNIA MONOGRAPH, V2nd
[5]  
GUEGUEN C, 1981, P INT C ACOUSTICS SP, P881
[6]  
KUNG SY, 1981, P INT S MATH THEOR N, P262
[7]   ON THE EIGENVECTORS OF SYMMETRIC TOEPLITZ MATRICES [J].
MAKHOUL, J .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1981, 29 (04) :868-872