FRACTALS WITHOUT ANOMALOUS DIFFUSION

被引:24
作者
BURIONI, R
CASSI, D
机构
[1] UNIV PARMA, DIPARTIMENTO FIS, I-43100 PARMA, ITALY
[2] UNIV PARMA, IST NAZL FIS MAT, CONSORZIO INTERUNIV STRUTTURA MAT, I-43100 PARMA, ITALY
[3] GRP COLL PARMA, IST NAZL FIS NUCL, UNITA PARMA, I-43100 PARMA, ITALY
关键词
D O I
10.1103/PhysRevE.49.R1785
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
By an alternative analytical technique we solve the random-walk problem on a particular class of fractal trees, calculating the exact value of their spectral dimension. The result shows that for all these structures the spectral dimension and the fractal dimension are equal, providing an example of fractal structures with nonanomalous diffusion as well as an example of fractals with a noninteger spectral dimension greater than 2.
引用
收藏
页码:R1785 / R1787
页数:3
相关论文
共 11 条
[1]  
ALEXANDER S, 1982, J PHYS LETT-PARIS, V43, pL625, DOI 10.1051/jphyslet:019820043017062500
[2]  
BURIONI R, UNPUB
[3]  
BURIONI R, UPRF93374 U PARM FIS
[4]   PHASE-TRANSITIONS AND RANDOM-WALKS ON GRAPHS - A GENERALIZATION OF THE MERMIN-WAGNER THEOREM TO DISORDERED LATTICES, FRACTALS, AND OTHER DISCRETE STRUCTURES [J].
CASSI, D .
PHYSICAL REVIEW LETTERS, 1992, 68 (24) :3631-3634
[5]   SPECTRAL DIMENSION OF BRANCHED STRUCTURES - UNIVERSALITY IN GEOMETRICAL DISORDER [J].
CASSI, D ;
REGINA, S .
PHYSICAL REVIEW LETTERS, 1993, 70 (11) :1647-1649
[6]   LATTICES OF EFFECTIVELY NONINTEGRAL DIMENSIONALITY [J].
DHAR, D .
JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (04) :577-585
[7]  
DOYLE PG, 1984, RANDOM WALKS ELECTRI
[8]  
Hardy GH., 1949, DIVERGENT SERIES
[9]  
HATTORI K, 1987, PROG THEOR PHYS SUPP, P108, DOI 10.1143/PTPS.92.108
[10]  
KAIMANOVICH VA, 1992, POTENTIAL ANAL, V1, P61, DOI DOI 10.1007/BF00249786