GOOD PERMUTATIONS FOR EXTREME DISCREPANCY

被引:73
作者
FAURE, H [1 ]
机构
[1] UNIV AIX MARSEILLE 1,F-13331 MARSEILLE 3,FRANCE
关键词
D O I
10.1016/0022-314X(92)90107-Z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The asymptotic behaviour of the discrepancy of the usual van der Corput sequences in arbitrary base b is known; and the implied constants tend to infinity with the base b. The aim of this paper is, first, to prove that for every base b there exist permutations of the digits such that the constants are less than 1 Log 2 = 1.442... and, second, to produce a permutation, in base b = 36, giving the smallest discrepancy presently known: lim sup( D(N) Log N) = 23 (35 Log 6) = 0.366.... © 1992.
引用
收藏
页码:47 / 56
页数:10
相关论文
共 8 条
[1]   DECREASE OF THE DISCREPANCY OF ANY SERIES ON T [J].
BEJIAN, R .
ACTA ARITHMETICA, 1982, 41 (02) :185-202
[2]   SELF-SIMILAR MEASURES AND SEQUENCES [J].
BOREL, JP .
JOURNAL OF NUMBER THEORY, 1989, 31 (02) :208-241
[3]   IMPROVED LOW-DISCREPANCY SEQUENCE FOR MULTIDIMENSIONAL QUASI-MONTE CARLO INTEGRATION [J].
BRAATEN, E ;
WELLER, G .
JOURNAL OF COMPUTATIONAL PHYSICS, 1979, 33 (02) :249-258
[4]  
FAURE H, 1981, B SOC MATH FR, V109, P143
[5]  
Kuipers L., 1974, UNIFORM DISTRIBUTION
[6]  
LAPEYRE B, 1989, CR ACAD SCI I-MATH, V308, P507
[7]  
Schmidt WM., 1972, ACTA ARITH, V21, P45, DOI [10.4064/aa-21-1-45-50, DOI 10.4064/AA-21-1-45-50]
[8]  
THOMAS A, 1989, ANN FAC SCI TOULOU M, V10, P369