BIFURCATION PHENOMENA NEAR HOMOCLINIC SYSTEMS - A 2-PARAMETER ANALYSIS

被引:193
作者
GASPARD, P
KAPRAL, R
NICOLIS, G
机构
[1] Univ Libre de Bruxelles, Faculte des, Sciences, Brussels, Belg, Univ Libre de Bruxelles, Faculte des Sciences, Brussels, Belg
关键词
D O I
10.1007/BF01010829
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
22
引用
收藏
页码:697 / 727
页数:31
相关论文
共 26 条
[1]  
Afraimovich V. S., 1977, Soviet Physics - Doklady, V22, P253
[2]  
ANDRONOV AA, 1971, THEORY BIFURCATION D
[3]   OSCILLATORS WITH CHAOTIC BEHAVIOR - AN ILLUSTRATION OF A THEOREM BY SHILNIKOV [J].
ARNEODO, A ;
COULLET, P ;
TRESSER, C .
JOURNAL OF STATISTICAL PHYSICS, 1982, 27 (01) :171-182
[4]   QUANTITATIVE UNIVERSALITY FOR A CLASS OF NON-LINEAR TRANSFORMATIONS [J].
FEIGENBAUM, MJ .
JOURNAL OF STATISTICAL PHYSICS, 1978, 19 (01) :25-52
[5]   UNIVERSAL METRIC PROPERTIES OF NON-LINEAR TRANSFORMATIONS [J].
FEIGENBAUM, MJ .
JOURNAL OF STATISTICAL PHYSICS, 1979, 21 (06) :669-706
[6]   ANALYSIS OF FLOW HYSTERESIS BY A ONE-DIMENSIONAL MAP [J].
FRASER, S ;
KAPRAL, R .
PHYSICAL REVIEW A, 1982, 25 (06) :3223-3233
[7]   WHAT CAN WE LEARN FROM HOMOCLINIC ORBITS IN CHAOTIC DYNAMICS [J].
GASPARD, P ;
NICOLIS, G .
JOURNAL OF STATISTICAL PHYSICS, 1983, 31 (03) :499-518
[8]   GENERATION OF A COUNTABLE SET OF HOMOCLINIC FLOWS THROUGH BIFURCATION [J].
GASPARD, P .
PHYSICS LETTERS A, 1983, 97 (1-2) :1-4
[9]  
GASPARD P, 1982, MEMOIRE LICENCE U BR
[10]  
GLENDINNING P, LOCAL GLOBAL BEHAVIO