NUCLEATION AND GROWTH WITH PERIODIC MODULATION - ASYMPTOTIC VERSUS EXACT RESULTS

被引:10
作者
SHNEIDMAN, VA
HANGGI, P
机构
[1] Institute of Physics, University of Augsburg, D-86135 Augsburg
来源
PHYSICAL REVIEW E | 1994年 / 49卷 / 01期
关键词
D O I
10.1103/PhysRevE.49.641
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider the nucleation and growth of cavities in a metastable viscous liquid with a periodically modulated pressure. Growth is described from the continuity equation with a source of supercritical nuclei. The solution is matched in an asymptotically smooth manner with the solution of the time-dependent Fokker-Planck equation describing nucleation. It is shown that as a function of the driving frequency the time-dependent flux of nuclei undergoes a characteristic transition. The transition marks the abrupt breakaway from the adiabatic regime. An exactly solvable model of nucleation and growth is introduced which confirms the asymptotic analysis.
引用
收藏
页码:641 / 648
页数:8
相关论文
共 27 条
[1]  
ABRAMOWITZ M, 1965, HDB MATH FUNCTIONS, pCH7
[2]  
AKULICHEV VA, 1978, CAVITATION CRYOGENIC
[3]  
[Anonymous], 1983, PHASE TRANSITIONS CR
[4]   PROCEEDINGS OF THE NATO ADVANCED RESEARCH WORKSHOP - STOCHASTIC RESONANCE IN PHYSICS AND BIOLOGY - PREFACE [J].
BULSARA, A ;
HANGGI, P ;
MARCHESONI, F ;
MOSS, F ;
SHLESINGER, M .
JOURNAL OF STATISTICAL PHYSICS, 1993, 70 (1-2) :1-2
[5]   KINETICS OF REACTANT ISOLATION .1. 1-DIMENSIONAL PROBLEMS [J].
COHEN, ER ;
REISS, H .
JOURNAL OF CHEMICAL PHYSICS, 1963, 38 (03) :680-&
[6]   RESONANT ACTIVATION OF A BROWNIAN PARTICLE OUT OF A POTENTIAL WELL - MICROWAVE-ENHANCED ESCAPE FROM THE ZERO-VOLTAGE STATE OF A JOSEPHSON JUNCTION [J].
DEVORET, MH ;
ESTEVE, D ;
MARTINIS, JM ;
CLELAND, A ;
CLARKE, J .
PHYSICAL REVIEW B, 1987, 36 (01) :58-73
[7]  
FISHMAN IM, 1988, SOV PHYS USP, V31, P561
[8]   SPINODAL DECOMPOSITION IN A BINARY-LIQUID MIXTURE [J].
GOLDBURG, WI ;
SHAW, CH ;
HUANG, JS ;
PILANT, MS .
JOURNAL OF CHEMICAL PHYSICS, 1978, 68 (02) :484-494
[9]   LINEAR RESPONSE AND FLUCTUATION THEOREMS FOR NONSTATIONARY STOCHASTIC-PROCESSES [J].
HANGGI, P ;
THOMAS, H .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1975, 22 (03) :295-300
[10]   PERIODICALLY DRIVEN STOCHASTIC-SYSTEMS [J].
JUNG, P .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1993, 234 (4-5) :175-295