RATE THEORY FOR SOLIDS .4. CLASSICAL BROWNIAN-MOTION MODEL

被引:55
作者
WEINER, JH [1 ]
FORMAN, RE [1 ]
机构
[1] BROWN UNIV,PROVIDENCE,RI 02912
来源
PHYSICAL REVIEW B | 1974年 / 10卷 / 02期
关键词
D O I
10.1103/PhysRevB.10.315
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
引用
收藏
页码:315 / 324
页数:10
相关论文
共 17 条
[1]   PERSISTENCE OF VACANCY MOTION [J].
BENNETT, CH ;
ALDER, BJ .
SOLID STATE COMMUNICATIONS, 1968, 6 (11) :785-&
[2]   Stochastic problems in physics and astronomy [J].
Chandrasekhar, S .
REVIEWS OF MODERN PHYSICS, 1943, 15 (01) :0001-0089
[3]   EXACT GENERALIZED LANGEVIN EQUATION FOR A PARTICLE IN A HARMONIC LATTICE [J].
DEUTCH, JM ;
SILBEY, R .
PHYSICAL REVIEW A, 1971, 3 (06) :2049-&
[4]   The Brownian movement and stochastic equations [J].
Doob, JL .
ANNALS OF MATHEMATICS, 1942, 43 :351-369
[5]  
Flynn C., 1972, POINT DEFECTS DIFFUS
[6]  
FRISCH HL, 1960, J CHEM PHYS, V32, P1026
[7]   Brownian motion in a field of force and the diffusion model of chemical reactions [J].
Kramers, HA .
PHYSICA, 1940, 7 :284-304
[8]   FREQUENCY FACTORS IN THERMALLY ACTIVATED PROCESS [J].
LANDAUER, R ;
SWANSON, JA .
PHYSICAL REVIEW, 1961, 121 (06) :1668-&
[9]  
Simon E. M., 1969, Journal of Statistical Physics, V1, P41, DOI 10.1007/BF01007240
[10]  
SUSSMANN JA, 1971, ANN PHYS-PARIS, V6, P135