A framework for using self-organising maps to analyse spatio-temporal patterns, exemplified by analysis of mobile phone usage

被引:22
作者
Andrienko, Gennady [1 ,2 ]
Andrienko, Natalia [1 ,2 ]
Bak, Peter [3 ]
Bremm, Sebastian [4 ]
Keim, Daniel [3 ]
von Landesberger, Tatiana [4 ,5 ]
Poelitz, Christian [1 ,2 ]
Schreck, Tobias [4 ]
机构
[1] Univ Bonn, D-53754 St Augustin, Germany
[2] Fraunhofer IAIS, D-53754 St Augustin, Germany
[3] Univ Konstanz, Constance, Germany
[4] Tech Univ Darmstadt, Darmstadt, Germany
[5] Fraunhofer IGD, Darmstadt, Germany
关键词
geovisualisation; spatio-temporal data; visual cluster analysis;
D O I
10.1080/17489725.2010.532816
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
We suggest a visual analytics framework for the exploration and analysis of spatially and temporally referenced values of numeric attributes. The framework supports two complementary perspectives on spatio-temporal data: as a temporal sequence of spatial distributions of attribute values (called spatial situations) and as a set of spatially referenced time series of attribute values representing local temporal variations. To handle a large amount of data, we use the self-organising map (SOM) method, which groups objects and arranges them according to similarity of relevant data features. We apply the SOM approach to spatial situations and to local temporal variations and obtain two types of SOM outcomes, called space-in-time SOM and time-in-space SOM, respectively. The examination and interpretation of both types of SOM outcomes are supported by appropriate visualisation and interaction techniques. This article describes the use of the framework by an example scenario of data analysis. We also discuss how the framework can be extended from supporting explorative analysis to building predictive models of the spatio-temporal variation of attribute values. We apply our approach to phone call data showing its usefulness in real-world analytic scenarios.
引用
收藏
页码:200 / 221
页数:22
相关论文
共 34 条
[1]  
Agarwal P., 2008, SELF ORG MAPS APPL G
[2]   Space-in-Time and Time-in-Space Self-Organizing Maps for Exploring Spatiotemporal Patterns [J].
Andrienko, G. ;
Andrienko, N. ;
Bremm, S. ;
Schreck, T. ;
von Landesberger, T. ;
Bak, P. ;
Keim, D. .
COMPUTER GRAPHICS FORUM, 2010, 29 (03) :913-922
[3]  
Andrienko G, 2010, CARTOGR J, V47, P22, DOI DOI 10.1179/000870409X12525737905042
[4]   Exploratory spatio-temporal visualization: an analytical review [J].
Andrienko, N ;
Andrienko, G ;
Gatalsky, P .
JOURNAL OF VISUAL LANGUAGES AND COMPUTING, 2003, 14 (06) :503-541
[5]  
Andrienko N., 2006, EXPLORATORY ANAL SPA
[6]  
[Anonymous], 2010, NIST SEMATECH E HDB
[7]  
[Anonymous], 2008, SELF ORG MAPS APPL G, P21
[8]   The self-organizing map, the Geo-SOM, and relevant variants for geosciences [J].
Baçao, F ;
Lobo, V ;
Painho, M .
COMPUTERS & GEOSCIENCES, 2005, 31 (02) :155-163
[9]  
Barthel Kai Uwe, 2008, 2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS), P227, DOI 10.1109/WIAMIS.2008.56
[10]   CLUSTER SEPARATION MEASURE [J].
DAVIES, DL ;
BOULDIN, DW .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1979, 1 (02) :224-227