REACHABILITY IN CYCLIC EXTENDED FREE-CHOICE SYSTEMS

被引:16
作者
DESEL, J [1 ]
ESPARZA, J [1 ]
机构
[1] UNIV HILDESHEIM,INST INFORMAT,W-3200 HILDESHEIM,GERMANY
关键词
D O I
10.1016/0304-3975(93)90154-L
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The reachability problem for Petri nets can be stated as follows: Given a Petri net (N, M0) and a marking M of N, does M belong to the state space of (N, M0)? We give a structural characterisation of reachable states for a subclass of extended free-choice Petri nets. The nets of this subclass are those enjoying three properties of good behaviour: liveness, boundedness and cyclicity. We show that the reachability relation can be computed from the information provided by the S-invariants and the traps of the net. This leads to a polynomial algorithm to decide if a marking is reachable.
引用
收藏
页码:93 / 118
页数:26
相关论文
共 13 条
[1]   FREE CHOICE SYSTEMS HAVE HOME STATES [J].
BEST, E ;
VOSS, K .
ACTA INFORMATICA, 1984, 21 (01) :89-100
[2]  
Best E., 1990, Formal Aspects of Computing, V2, P123, DOI 10.1007/BF01888220
[3]   TRAPS CHARACTERIZE HOME STATES IN FREE CHOICE SYSTEMS [J].
BEST, E ;
DESEL, J ;
ESPARZA, J .
THEORETICAL COMPUTER SCIENCE, 1992, 101 (02) :161-176
[4]  
Commoner F., 1971, Journal of Computer and System Sciences, V5, P511, DOI 10.1016/S0022-0000(71)80013-2
[5]  
DESEL J, 1991, LECT NOTES COMPUT SC, V480, P384, DOI 10.1007/BFb0020814
[6]  
Genrich H. J., 1973, Acta Informatica, V2, P143, DOI 10.1007/BF00264027
[7]  
Hack M., 1972, ANAL PRODUCTION SCHE
[8]  
HACK M, 1974, MIT17 COMP STRUCT NO
[9]  
HILLEN D, 1985, PETRI NET NEWSLETTER, V16, P28
[10]  
KOSARAJU SR, 1982, 14TH P ANN S THEOR C, P267