MINORIZATION CONDITIONS AND CONVERGENCE-RATES FOR MARKOV-CHAIN MONTE-CARLO

被引:280
作者
ROSENTHAL, JS
机构
关键词
BIVARIATE NORMAL MODEL; COUPLING; DRIFT CONDITION; GIBBS SAMPLER; HARRIS RECURRENCE; HIERARCHICAL POISSON MODEL; METROPOLIS-HASTINGS ALGORITHM; REGENERATION TIME;
D O I
10.2307/2291067
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
General methods are provided for analyzing the convergence of discrete-time, general state-space Markov chains, such as those used in stochastic simulation algorithms including the Gibbs sampler. The methods provide rigorous, a priori bounds on how long these simulations should he run to give satisfactory results. Results are applied to two models of the Gibbs sampler: a bivariate normal model, and a hierarchical Poisson model (with gamma conditionals). The methods use the notion of minorization conditions for Markov chains.
引用
收藏
页码:558 / 566
页数:9
相关论文
共 39 条
[1]   COMPARING SWEEP STRATEGIES FOR STOCHASTIC RELAXATION [J].
AMIT, Y ;
GRENANDER, U .
JOURNAL OF MULTIVARIATE ANALYSIS, 1991, 37 (02) :197-222
[2]  
AMIT Y, 1991, J MULTIVARIATE ANAL, V38, P89
[3]  
AMIT Y, 1993, 352 U CHIC DEP STAT
[4]  
[Anonymous], 1993, LARGE DEVIATIONS TEC
[5]  
[Anonymous], 1991, INTRO PROBABILITY TH
[6]  
[Anonymous], 1994, MARKOV CHAINS STOCHA
[7]  
[Anonymous], 1992, ANN APPL PROBAB
[8]  
APPLEGATE D, 1990, 500 CARN MELL U SCH
[9]   LIMIT-THEOREMS FOR SEMI-MARKOV PROCESSES AND RENEWAL THEORY FOR MARKOV-CHAINS [J].
ATHREYA, KB ;
MCDONALD, D ;
NEY, P .
ANNALS OF PROBABILITY, 1978, 6 (05) :788-797
[10]   NEW APPROACH TO THE LIMIT THEORY OF RECURRENT MARKOV-CHAINS [J].
ATHREYA, KB ;
NEY, P .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 245 (NOV) :493-501