RECURSIVE HYBRID ALGORITHM FOR NONLINEAR-SYSTEM IDENTIFICATION USING RADIAL BASIS FUNCTION NETWORKS

被引:225
作者
CHEN, S [1 ]
BILLINGS, SA [1 ]
GRANT, PM [1 ]
机构
[1] UNIV SHEFFIELD, DEPT CONTROL ENGN, SHEFFIELD S1 3JD, S YORKSHIRE, ENGLAND
关键词
D O I
10.1080/00207179208934272
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recursive identification of non-linear systems is investigated using radial basis function networks. A novel approach is adopted which employs a hybrid clustering and least squares algorithm. The recursive clustering algorithm adjusts the centres of the radial basis function network while the recursive least squares algorithm estimates the connection weights of the network. Because these two recursive learning rules are both linear, rapid convergence is guaranteed and this hybrid algorithm significantly enhances the real-time or adaptive capability of radial basis function models. The application to simulated real data are included to demonstrate the effectiveness of this hybrid approach.
引用
收藏
页码:1051 / 1070
页数:20
相关论文
共 22 条
[1]  
[Anonymous], 1987, LEARNING INTERNAL RE
[2]  
BILLINGS SA, 1986, INT J CONTROL, V44, P235, DOI 10.1080/00207178608933593
[3]  
BILLINGS SA, 1985, 7TH P IFAC S ID SYST, P155
[4]   MAXIMUM-POWER VALIDATION OF MODELS WITHOUT HIGHER-ORDER FITTING [J].
BOHLIN, T .
AUTOMATICA, 1978, 14 (02) :137-146
[5]  
Broomhead D. S., 1988, Complex Systems, V2, P321
[6]   PRACTICAL IDENTIFICATION OF NARMAX MODELS USING RADIAL BASIS FUNCTIONS [J].
CHEN, S ;
BILLINGS, SA ;
COWAN, CFN ;
GRANT, PM .
INTERNATIONAL JOURNAL OF CONTROL, 1990, 52 (06) :1327-1350
[7]   NONLINEAR-SYSTEMS IDENTIFICATION USING RADIAL BASIS FUNCTIONS [J].
CHEN, S ;
BILLINGS, SA ;
COWAN, CFN ;
GRANT, PM .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1990, 21 (12) :2513-2539
[8]   REPRESENTATIONS OF NON-LINEAR SYSTEMS - THE NARMAX MODEL [J].
CHEN, S ;
BILLINGS, SA .
INTERNATIONAL JOURNAL OF CONTROL, 1989, 49 (03) :1013-1032
[9]   NONLINEAR-SYSTEM IDENTIFICATION USING NEURAL NETWORKS [J].
CHEN, S ;
BILLINGS, SA ;
GRANT, PM .
INTERNATIONAL JOURNAL OF CONTROL, 1990, 51 (06) :1191-1214
[10]   PARALLEL RECURSIVE PREDICTION ERROR ALGORITHM FOR TRAINING LAYERED NEURAL NETWORKS [J].
CHEN, S ;
COWAN, CFN ;
BILLINGS, SA ;
GRANT, PM .
INTERNATIONAL JOURNAL OF CONTROL, 1990, 51 (06) :1215-1228